A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
GNN-XML: Graph Neural Networks for Extreme Multi-label Text Classification
[article]
2020
arXiv
pre-print
Extreme multi-label text classification (XMTC) aims to tag a text instance with the most relevant subset of labels from an extremely large label set. XMTC has attracted much recent attention due to massive label sets yielded by modern applications, such as news annotation and product recommendation. The main challenges of XMTC are the data scalability and sparsity, thereby leading to two issues: i) the intractability to scale to the extreme label setting, ii) the presence of long-tailed label
arXiv:2012.05860v1
fatcat:l57bt2tkazaf5cdnokpug4e77m