On the Laplacian-energy-like invariant

Kinkar Ch. Das, Ivan Gutman, A. Sinan Çevik
<span title="">2014</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wsx3rzhpingfvewcn5nwhfkq3e" style="color: black;">Linear Algebra and its Applications</a> </i> &nbsp;
The Laplacian-energy-like of a simple connected graph is defined as LEL = LEL(G) = ∑ , where ( ) ≥ ( ) ≥ ⋯ ≥ ( ) = 0 are the Laplacian eigenvalues of the graph . In this paper, some upper and lower bounds for LEL, as well as, some lower bounds for the spectral radius of graph are obtained.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.laa.2013.05.002">doi:10.1016/j.laa.2013.05.002</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ybrwk5e7e5e63icrdtkqxvmvju">fatcat:ybrwk5e7e5e63icrdtkqxvmvju</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200320210803/http://ijmc.kashanu.ac.ir/article_63443_846253a27afa935b360ad70ebf0d97fb.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e0/bf/e0bf09076c5742b9c9282fe68923ec2829da4725.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.laa.2013.05.002"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>