A TIME SERIES FORECASTING MODEL BASED ON LINGUISTIC FORECASTING RULES

Pham Đinh Phong
2021 Journal of Computer Science and Cybernetics  
The fuzzy time series (FTS) forecasting models have been being studied intensively over the past few years. Most of the researches focus on improving the effectiveness of the FTS forecasting models using time-invariant fuzzy logical relationship groups proposed by Chen et al. In contrast to Chen's model, a fuzzy set can be repeated in the right-hand side of the fuzzy logical relationship groups of Yu's model. N. C. Dieu enhanced Yu's forecasting model by using the time-variant fuzzy logical
more » ... tionship groups instead of the time-invariant ones. The forecasting models mentioned above partition the historical data into subintervals and assign the fuzzy sets to them by the human expert's experience. N. D. Hieu et al. proposed a linguistic time series by utilizing the hedge algebras quantification to converse the numerical time series data to the linguistic time series. Similar to the FTS forecasting model, the obtained linguistic time series can define the linguistic, logical relationships which are used to establish the linguistic, logical relationship groups and form a linguistic forecasting model. In this paper, we propose a linguistic time series forecasting model based on the linguistic forecasting rules induced from the linguistic, logical relationships instead of the linguistic, logical relationship groups proposed by N. D. Hieu. The experimental studies using the historical data of the enrollments of University of Alabama observed from 1971 to 1992 and the daily average temperature data observed from June 1996 to September 1996 in Taipei show the outperformance of the proposed forecasting models over the counterpart ones.
doi:10.15625/1813-9663/37/1/15852 fatcat:xfptqkmgpvbajhexfp57waqzqu