Collaborative Algorithms for Communication in Wireless Sensor Networks [chapter]

Tim Nieberg, Stefan Dulman, Paul Havinga, Lodewijk van Hoesel, Jian Wu
2003 Ambient Intelligence: Impact on Embedded Sytem Design  
In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient solutions for medium access control, clusterbased routing, and multipath creation and exploitation are discussed. The proposed MAC protocol is autonomous, decentralized and designed to minimize power
more » ... onsumption. Scheduling of operations, e.g. for the MAC protocol, is naturally supported by a clustered structure of the network. The multipath on-demand routing algorithm improves the reliability of data routing. The approaches taken and presented are designed to work together and support each other. Wireless sensor networks (WSN) are an emerging field of research which combines many challenges of modern computer science, wireless communication and mobile computing. WSNs are one of the prime examples of Ambient Intelligence, also known as ubiquitous computing. Ambient systems are networked embedded systems intimately integrated with the everyday environment and are supporting people in their activities. These systems are quite different from those of current computer systems, and will have to be based on radically new architectures and use novel protocols. Recent advances in sensor technology, low power analog and digital electronics and low-power radio frequency design have enabled the development of cheap, small, low-power sensor nodes, integrating sensing, processing and wireless communication capabilities. Embedding millions of sensors into an environment creates a digital skin or wireless network of sensors. These massively distributed sensor networks, communicate with one another and summarize the immense amount of low-level information to produce data representative of the overall environment. From collaboration between (large) groups of sensor nodes, intelligent behaviour can emerge that surpasses the limited capabilities of individual sensor nodes. Sensor nodes collaborate to be able to cope with the environment: sensor nodes operate completely wireless, and are able to spontaneously create an impromptu network, assemble the network themselves, dynamically adapt to device failure and degradation, manage movement of sensor nodes, and react to changes in task and network requirements. Despite these dynamic changes in configuration of the sensor network, critical real-time information must still be disseminated dynamically from mobile sensor data sources through the selforganising network infrastructure to the applications and services. Sensor network systems will enhance usability of appliances, and provide condition-based maintenance in the home. These devices will enable fundamental changes in applications spanning the home, office, clinic, factory, vehicle, metropolitan area, and the global environment. Sensor node technology enables data collection and processing in a variety of situations, for applications, which include environmental monitoring, context-aware personal assistants (tracking of location, activity, and environment of the user), home security, machine failure diagnosis, medical monitoring, and surveillance and monitoring for security. This paper deals with networking protocols involved in a WSN. We address all traditional layers like MAC, transport, and routing, but unlike those wellknown variants, we use a more integrated view.
doi:10.1007/0-306-48706-3_14 fatcat:lwlilbd2wfh5jip5g7jwfnfckq