Rational Shi tableaux and the skew length statistic [article]

Robin Sulzgruber
<span title="2016-09-15">2016</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We define two refinements of the skew length statistic on simultaneous core partitions. The first one relies on hook lengths and is used to prove a refined version of the theorem stating that the skew length is invariant under conjugation of the core. The second one is equivalent to a generalisation of Shi tableaux to the rational level of Catalan combinatorics. These rational Shi tableaux encode dominant p-stable elements in the affine symmetric group. We prove that the rational Shi tableau is
more &raquo; ... injective, that is, each dominant p-stable affine permutation is determined uniquely by its Shi tableau. Moreover, we provide a uniform generalisation of rational Shi tableaux to Weyl groups, and conjecture injectivity in the general case.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1512.04320v2">arXiv:1512.04320v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/orj5hfj6v5fgbbaoya336xu4ku">fatcat:orj5hfj6v5fgbbaoya336xu4ku</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200923084655/https://arxiv.org/pdf/1512.04320v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/2e/4b/2e4b4603be488c6061236269011c5f6e7fa19b7d.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1512.04320v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>