CMP process optimization using alkaline bulk copper slurry on a 300 mm Applied Materials Reflexion LK system

Chenwei Wang, Suohui Ma, Yuling Liu, Rui Chen, Yang Cao
2013 Journal of Semiconductors  
The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by Fermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from 2007 November to 2013 January, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region
more » ... in a square region of 10 • × 10 • , finding a source extension σ ext = 1. • 8 ± 0. • 5. The observed differential energy spectrum is dN/dE = (2.5 ± 0.4) × 10 −11 (E/1 TeV) −2.6±0.3 photons cm −2 s −1 TeV −1 , in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by Fermi-LAT and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with supernova remnants (SNRs) indicates that the particle acceleration inside a superbubble is similar to that in an SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.
doi:10.1088/1674-4926/34/12/126001 fatcat:zmq5bpf47fetvnmlh3h5msp2lq