A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Ordinary Differential Equation with Left and Right Fractional Derivatives and Modeling of Oscillatory Systems
2020
Mathematics
We consider the principle of least action in the context of fractional calculus. Namely, we derive the fractional Euler–Lagrange equation and the general equation of motion with the composition of the left and right fractional derivatives defined on infinite intervals. In addition, we construct an explicit representation of solutions to a model fractional oscillator equation containing the left and right Gerasimov–Caputo fractional derivatives with origins at plus and minus infinity. We derive
doi:10.3390/math8122122
fatcat:eakvqbzifba2zkqf2addscg4ee