Reinforcement Learning with Chromatic Networks for Compact Architecture Search [article]

Xingyou Song, Krzysztof Choromanski, Jack Parker-Holder, Yunhao Tang, Wenbo Gao, Aldo Pacchiano, Tamas Sarlos, Deepali Jain, Yuxiang Yang
2021 arXiv   pre-print
We present a neural architecture search algorithm to construct compact reinforcement learning (RL) policies, by combining ENAS and ES in a highly scalable and intuitive way. By defining the combinatorial search space of NAS to be the set of different edge-partitionings (colorings) into same-weight classes, we represent compact architectures via efficient learned edge-partitionings. For several RL tasks, we manage to learn colorings translating to effective policies parameterized by as few as 17
more » ... weight parameters, providing >90 over state-of-the-art compact policies based on Toeplitz matrices, while still maintaining good reward. We believe that our work is one of the first attempts to propose a rigorous approach to training structured neural network architectures for RL problems that are of interest especially in mobile robotics with limited storage and computational resources.
arXiv:1907.06511v4 fatcat:i4d5rlvqfzgrnkgah5hlvdwhla