A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
A Unified Probabilistic Model for Global and Local Unsupervised Feature Selection
2011
International Conference on Machine Learning
Existing algorithms for joint clustering and feature selection can be categorized as either global or local approaches. Global methods select a single cluster-independent subset of features, whereas local methods select cluster-specific subsets of features. In this paper, we present a unified probabilistic model that can perform both global and local feature selection for clustering. Our approach is based on a hierarchical beta-Bernoulli prior combined with a Dirichlet process mixture model. We
dblp:conf/icml/GuanDJ11
fatcat:k4drdyb22ba4je4ldehrmuhvbq