Stem cell bioprocessing: The bioengineering of lung epithelium in 3D from embryonic stem cells

Siti N. Ismail, Anne Bishop, Sakis Mantalaris, DTI MARA
Stem cell therapies and tissue engineering strategies are required for the clinical treatment of respiratory diseases. Previous studies have established protocols for the differentiation of airway epithelium from stem cells but have involved costly and laborious culture methods. The aim of this thesis was to achieve efficient and reproducible maintenance and differentiation of embryonic stem cells to airway epithelium, in 2D and 3D culture, by developing appropriate bioprocessing technology.
more » ... sing technology. Firstly, the 2D differentiation process of human and murine ES cells into pulmonary epithelial cells was addressed. The main finding in was that the proportion of type II pneumocytes, the major epithelial component of the gas-exchange area of lung, differentiated with this method was higher than that obtained in previous sudies, 33% of resultant cell expressed the specific marker surfactant protein C (SPC) compared with up to 10%. Secondly, the maintenance and differentiation was carried out in 3D. A protocol was devised that maintained undifferentiated human ES cells in culture for more than 200 days encapsulated in alginate without any feeder layer or growth factors. For ES cell differentiation in 3D, a method was devised to provide a relatively cheap and simple means of culture and use medium conditioned by a human pneumocyte tumour cell line (A549). The differentiation of human and murine ES cells into pulmonary epithelial cells, particularly type II pneumocytes, was found to be upregulated by culture in this conditioned medium, with or without embryoid body formation. The third step was to test whether this differentiation protocol was amenable to scale-up and automation in a bioreactor using cell encapsulation. It was possible to show that encapsulated murine ES cells cultured in static, co-culture or rotating wall bioreactor (HARV) systems, differentiate into endoderm and, predominantly, type I and II pneumocytes. Flow cytometry revealed that the mean yield of differentiated type II pneumocytes was around 50% at day 10 [...]
doi:10.25560/9013 fatcat:epqvlbhjj5fura5ip2bmqcmqri