Optimization-friendly generic mechanisms without money [article]

Mark Braverman
2021 arXiv   pre-print
The goal of this paper is to develop a generic framework for converting modern optimization algorithms into mechanisms where inputs come from self-interested agents. We focus on aggregating preferences from n players in a context without money. Special cases of this setting include voting, allocation of items by lottery, and matching. Our key technical contribution is a new meta-algorithm we call (Adaptive Pricing Equalizing Externalities). The framework is sufficiently general to be combined
more » ... th any optimization algorithm that is based on local search. We outline an agenda for studying the algorithm's properties and its applications. As a special case of applying the framework to the problem of one-sided assignment with lotteries, we obtain a strengthening of the 1979 result by Hylland and Zeckhauser on allocation via a competitive equilibrium from equal incomes (CEEI). The [HZ79] result posits that there is a (fractional) allocation and a set of item prices such that the allocation is a competitive equilibrium given prices. We further show that there is always a reweighing of the players' utility values such that running unit-demand VCG with reweighed utilities leads to a HZ-equilibrium prices. Interestingly, not all HZ competitive equilibria come from VCG prices. As part of our proof, we re-prove the [HZ79] result using only Brouwer's fixed point theorem (and not the more general Kakutani's theorem). This may be of independent interest.
arXiv:2106.07752v1 fatcat:cit3kuf6jzhidphr7b5iepszwa