Nanoelectromechanical torsion switch of low operation voltage for nonvolatile memory application

Wenfeng Xiang, Chengkuo Lee
2010 Applied Physics Letters  
Nanoelectromechanical torsion switches are fabricated by using focused ion beam milling on silicon-on-insulator substrate. The device layer thickness of the substrate is 220 nm. A 9 m long and 1.5 m wide suspended silicon cantilever is mechanically connected to peripheral silicon device layer via a silicon torsion spring with the length of 2.4 m and width of 530 nm. After hydrofluoric-acid vapor releasing, the silicon cantilever shows downward deflection. The pull-in voltage is about 5.5 V and
more » ... is about 5.5 V and the ratio of current measured at the ON/OFF states is over 1000. Moreover, the simulated data of pull-in voltage of torsion switch is in agreement with the experimental result, which will contribute to design of an optimal nanoelectromechanical torsion switch with a driven voltage as low as 1.2 V. According to the preliminary results, this torsion switch with low driven voltage has a great potential for high density non-volatile memory application.
doi:10.1063/1.3428781 fatcat:63uuyjpvonee7o6awgqyzf3iyi