
An Optimal Microarchitecture for Stencil Computation
Acceleration Based on Non-Uniform Partitioning of Data

Reuse Buffers

Jason Cong*, Peng Li , Bingjun Xiao*, and Peng Zhang

Computer Science Dept. & Electrical Engineering Dept.

University of California, Los Angeles
*{cong, xiao}@cs.ucla.edu

ABSTRACT
High-level synthesis (HLS) tools have made significant progress
in compiling high-level descriptions of computation into highly
pipelined register-transfer level (RTL) specifications. The high-
throughput computation raises a high data demand. To prevent data
accesses from being the bottleneck, on-chip memories are used as
data reuse buffers to reduce off-chip accesses. Also memory parti-
tioning is explored to increase the memory bandwidth by schedul-
ing multiple simultaneous memory accesses to different memory
banks. Prior work on memory partitioning of data reuse buffers
is limited to uniform partitioning. In this paper, we perform an
early-stage exploration of non-uniform memory partitioning. We
use the stencil computation, a popular communication-intensive
application domain, as a case study to show the potential benefits
of non-uniform memory partitioning. Our novel method can al-
ways achieve the minimum memory size and the minimum number
of memory banks, which cannot be guaranteed in any prior work.
We develop a generalized microarchitecture to decouple stencil ac-
cesses from computation, and an automated design flow to integrate
our microarchitecture with the HLS-generated computation kernel
for a complete accelerator.

1. INTRODUCTION
Accelerator-centric architectures can bring 10-100x energy effi-

ciency by offloading computation from general-purpose CPU cores
to application-specific accelerators [1]. The engineering cost of
designing massive heterogeneous accelerators is high, but can be
much reduced by raising their abstraction level beyond RTL to C
by high-level synthesis (HLS) [2]. Data access optimization has a
strong impact on HLS results. This significantly motivates recent
work on data reuse [3, 4] and memory partitioning [5–9] in HLS.

External memory bandwidth is a significant bottleneck for sys-
tem performance and power consumption. Data reuse is an efficient
technique of using on-chip memories to reduce external memory
accesses. When an application contains a data array with multiple
references, we can allocate a reuse buffer and keep each array el-
ement in the buffer from its first access until its last access. Then
each array element needs to be fetched from the external memory
only once, and the off-chip traffic is reduced to the minimum. Loop
transformation can be applied to improve data locality and reduce
the size of the data reuse buffer [3, 4].

When the innermost loop of an application is fully pipelined,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’14, June 01 - 05 2014, San Francisco, CA, USA.
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

an accelerator needs to perform multiple load operations from the
same reuse buffer every clock cycle. To avoid contention on mem-
ory ports, memory partitioning of the reuse buffer is required. Since
the transistor count of memory control logics is proportional to
the number of memory banks after partitioning, the optimization
goal of memory partitioning is to minimize the number of mem-
ory banks. The constraint is that the multiple array elements to
be loaded every clock cycle are always stored in different mem-
ory banks. The work in [5, 6] provides solid frameworks of mem-
ory partitioning. Further optimizations, including memory access
rescheduling [7] and multi-dimension arrays [8], are also proposed.
But none of them can guarantee the optimal solution for a given
case in terms of the number of banks. The reason is that their op-
timization space is limited to uniform memory partitioning, i.e., all
the memory banks have to be of the same size. It is an unnecessary
constraint which was assumed by commodity HLS tools, e.g., [10].
Other work partitions different fields of a single data structure into
multiple memory banks for data parallelism based on profiling re-
sults [9]. It is orthogonal to the problems on multiple array refer-
ences in [5–8] and this paper.

In this paper, we go beyond the limitation of uniform memory
partitioning, and propose a novel method based on non-uniform
memory partitioning. As a result, we can achieve fewer memory
banks than the optimal solutions in prior work [5–8] which were
limited to uniform memory partitioning. As an early-stage explo-
ration of non-uniform memory partitioning, in this paper we focus
on stencil computation, a popular communication-intensive appli-
cation domain. We develop a microarchitecture with novel struc-
tures of memory systems which achieve the theoretical minimum
number of memory banks for any stencil access patterns. Exper-
imental results show that we can reduce 25 − 100% of various
resources including BRAMs, logic slices, and DSPs compared to
prior work [8], along with slightly improved timing.

2. PRELIMINARY

2.1 Stencil Computation
Stencil computation comprises an important class of kernels in

many application domains, such as image processing, constituent
kernels in multigrid methods, and partial differential equation solvers.
These kernels often contribute to most workloads in these applica-
tions. Even in the recent publications on memory partitioning [7,8]
which were developed for general applications, all the benchmarks
used in the publications are in fact stencil computation.

The data elements accessed in stencil computation are on a large
multi-dimensional grid which usually exceeds on-chip memory ca-
pacity. The computation is iterated as a stencil window slides over
the grid. In each iteration, the computation kernel accesses all the
data points in the stencil window to calculate an output. Both the
grid shape and the stencil window can be arbitrary as specified by
the given stencil applications. A precise definition of stencil com-
putation can be found in [11, 12].

void denoise2D(f l o a t A[768][1024],
f l o a t B[768][1024])

{
f o r(i n t i = 1; i < 767; i++)

5 f o r(i n t j = 1; j < 1023; j++)
B[i][j] =

pow(A[i][j] - A[i][j-1], 2) +
pow(A[i][j] - A[i][j+1], 2) +
pow(A[i][j] - A[i-1][j], 2) +

10 pow(A[i][j] - A[i+1][j], 2);
}

Listing 1: Example C code of a typical stencil computation (5-point
stencil window in the kernel ‘DENOISE’ in medical imaging [13]).

Listing 1 shows an example stencil computation in the kernel ‘DE-
NOISE’ in medical imaging [13]. Its grid shape is a 768 × 1024

0 1024j

A[i-1][j]

A[i][j-1] A[i][j] A[i][j+1]

reuse distance = 1023

i
A[i][j+1]

768

3

Figure 1: Iteration domain of the example stencil computation in
Listing 1.

rectangle, and its stencil window contains 5 points, as shown in
Fig. 1. Five data elements need to be accessed in each iteration. In
addition, many data elements will be repeatedly accessed among
these iterations. For example, A[2][2] will be accessed five times,
when (i, j) ∈ {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2)}. This leads to
high on-chip memory port contention and off-chip traffic, espe-
cially when the stencil window is large (e.g., after loop fusion of
stencil applications for computation reduction as proposed in [14]).
Therefore, during the hardware development of a stencil applica-
tion, a large portion of engineering effort is spent on data reuse and
memory partitioning optimization.

2.2 Microarchitecture for Stencil Accesses

Accelerator

Microarchitecture for Stencil Accesses of Data

M S b t f D t A AMemory Subsystem for Data Array A

Data Reuse Memory
A[0..767][0..1023]

Buffers Controllers
Interconnects

A[i][j 1] A[i][j] A[i][j 1]

Computation Kernel

A[i-1][j] A[i+1][j]A[i][j-1] A[i][j] A[i][j+1]

B[i][j]

1

Figure 2: The overall architecture of our microarchitecture for sten-
cil computation. It decouples stencil accesses from computation.

In this work we develop a microarchitecture to decouple the sten-
cil access patterns from the computation, as shown in Fig. 2. The
microarchitecture contains multiple memory systems, and each is
optimized to a data array with stencil accesses. Since there are
no reuse opportunities among different data arrays, the memory
systems for different arrays are independent of each other. Each
memory system receives a single data stream which iterates on a
multi-dimensional grid without any repeated external access. Each
memory system contains data reuse buffers, memory controllers

and interconnects that have been customized for the access patterns
of the data array used in the target stencil computation. A mem-
ory system sends data to the computation kernel via each data port
associated with each array reference in the original user code. If
all the data are consumed by the computation kernel, the memory
system will immediately prepare the data used in the next cycle to
feed into the fully pipelined computation kernel.

void denoise2D_kernel(v o l a t i l e f l o a t* a0_ptr,
v o l a t i l e f l o a t* a1_ptr,
v o l a t i l e f l o a t* a2_ptr,
v o l a t i l e f l o a t* a3_ptr,

5 v o l a t i l e f l o a t* a4_ptr,
v o l a t i l e f l o a t* b_ptr)

{
f o r(i n t i = 1; i < 767; i++)

f o r(i n t j = 1; j < 1023; j++)
10 {

#pragma AP pipeline II=1
f l o a t a0 = *a0_ptr;
*b_ptr =

pow(a0 - *a1_ptr, 2) +
15 pow(a0 - *a2_ptr, 2) +

pow(a0 - *a3_ptr, 2) +
pow(a0 - *a4_ptr, 2);

}
}

Listing 2: Example code of the computation kernel where all the
memory accesses are offloaded to our microarchitecture. The key-
word ‘volatile’ in the code informs HLS tools of potential data
change after access. The pragma ‘pipeline is used in Xilinx Vivado
HLS [10] to pipeline the innermost loop.

With our microarchitecture, the C code of the computation kernel
can be simplified to Listing 2, where users no longer need to op-
timize memory accesses, which is offloaded to our microarchitec-
ture. Users can assume that each data access to the points should
get the same data from our accelerator microarchitecture as the
original load operation. The C code of the computation kernel can
be compiled by HLS tools for a fully pipelined hardware imple-
mentation with the most efficient resource usage.

2.3 Design Objectives
We have three design objectives for the proposed microarchitec-

ture:
1. Full pipelining. As the stencil window slides every clock

cycle, the microarchitecture is able to send out all the data in the
stencil window to the computation kernel and get all the data ready
for the consecutive accesses in the next cycle.

2. Minimum data reuse buffer size. When a data element is fully
reused for each access, it stays in on-chip memories from its first
access until its last access. Meanwhile, other elements in the array
are loaded from external memory every clock cycle. Therefore,
the theoretical minimum size of the reuse buffer for a data array is
equal to the maximum lifetime of any element in the array. In the
example in Fig. 1, A[2][2] is accessed now by the array reference
A[i + 1][j] for the first time, and is accessed 2048 cycles later by
the reference A[i− 1][j] for the last time. Therefore, the minimum
size of the data reuse buffer for array A will be 2048.

3. Minimum number of reuse buffer banks. Suppose the stencil
window of an input array contains n points, i.e., there are n data
references to the array. It means that each clock cycle, n data el-
ements need to be read out, either from reuse buffers or from the
external memory. Suppose we use dual-port memories to imple-
ment reuse buffers. One port of a buffer bank is occupied by the
replacement of an expired data element with a new element from
the external memory every cycle. There is only one port left in each
memory bank for us to read the n elements needed by the stencil
window. Suppose one of the n element happens to be the new ele-
ment from the external memory in a certain smart data reuse mech-
anism. There are still n − 1 data elements to read, and we would
need at least n− 1 memory banks. In the example of Fig. 1, n = 5
indicates that we need at least four memory banks. As the stencil
window slides, all five data elements in the window should never
be in the same bank. This is a tough constraint to satisfy, and prior

work [5–8] had to use more banks to eliminate bank conflicts in
difficult cases. Fig. 3 shows that the number of banks ranges from

8
10

s

2
4
6
8

of

 b
an

ks

0
2

16 17 18 19 20 21 22 23 24 25

#

row size of the data grid
Figure 3: Even for a constant stencil window in Fig. 1, the number
of banks varies as the row size of the data grid changes [5].

five to eight in [5] as the row size of the data grid changes, even if
the stencil window keeps the constant shape in Fig. 1. The tech-
nologies proposed in [7, 8] can keep the number of banks consis-
tently to be five in the case of the stencil window shown in Fig. 1.
However when the stencil window changes to some other shape

(a) (b) (c)

1

Figure 4: Example stencil windows where more banks are needed
than the # of array references in [7,8]. (a) 4-point stencil in ‘BICU-
BIC’ [15]. (b) 4-point stencil in ‘RICIAN’ [16]. (c) 19-point stencil
in ‘SEGMENTATION_3D’ [8].

in other applications, e.g., the ones shown in Fig. 4, the methods
in [7,8] will need 5, 5, 20 banks respectively, which are larger than
the minimum values.

In this work we will present a generalized microarchitecture that
can simultaneously achieve these optimal design objectives for any
application that falls in the category of stencil computation.

3. METHODOLOGY

3.1 Overview
The internal structure of a memory system in our microarchitec-

ture is illustrated by the example in Fig. 5, which is generated for
the stencil computation in Listing 1. Suppose the stencil window
contains n points (n = 5 in the example of Listing 1). Our memory
system will contain n − 1 data reuse FIFOs as well as n data path
splitters and n data filters connected together in the way shown in
Fig. 5. The data reuse FIFOs provide the same storage as conven-
tional data reuse buffers, and the data path splitters and filters work
as memory controllers and data interconnects. In contrast to con-
ventional cyclic memory partitioning [5, 7, 8] which uses uniform
buffer sizes, the sizes of reuse buffers in our design are nonuniform.
They are customized to the shape of the stencil window in the target
application.

3.2 Denotations
To better explain the working principle of our memory system,

we provide a table of denotations that will be used in the following
sections in Table 1. The precise definitions of the denotations are
given in [11].

3.3 Working Principle
Since our microarchitecture is based on nonuniform memory

partitioning in contrast to uniform partitioning in prior work, the
memory controlling mechanism cannot follow the modulo schedul-
ing of data accesses among memory banks in prior work [5,7,8]. In-
stead, our microarchitecture is a novel design based on data stream-
ing. Each module in our design is autonomous and can work in a
full pipeline as long as its upstream module produces a data ele-
ment and its downstream module consumes an element every clock

Denotations Meanings Example by Fig. 1
~i loop iteration vector ~i = (1, 2)
A data array the array A with the five references
Ax array reference the five references such as A[i + 1][j]
~h data access index ~hx = (2, 2) being accessed by Ax

~f data access offset ~fx = ~hx −~i = (1, 0) constant for Ax

DAx data domain {(i, j) |2 ≤ i ≤ 767, 1 ≤ j ≤ 1022}
DA input data domain {(i, j) |0 ≤ i ≤ 767, 0 ≤ j ≤ 1023}

~rAx←Ay reuse distance vector (1,-1) from A[i + 1][j] to A[i][j + 1]

‖~rAx←Az‖ maximum reuse distance 2048 from A[i + 1][j] to A[i − 1][j]
�l lexicographic order (1, 0) �l (0, 1) �l (0, 0) �l (−1, 0)

Table 1: Denotations used in the working principle of our memory
system.

cycle. As we shall discuss next, our design achieves function cor-
rectness, data streaming without stalling, the minimum reuse buffer
size, and the minimum number of buffer banks.

3.3.1 Function Correctness
Each data path splitter in Fig. 5 reads any existing data element

from its precedent FIFO and sends the data element to the suc-
cessive FIFO as well as to the data filter below. Each data filter
customizes the data stream that flows into the computation kernel
to fit the access patterns of the associated array reference. A data
filter for an array reference Ax receives the data stream which it-
erates in DA and sends out the data which iterates in DAx . For
example, filter 0 in Fig. 5 sends the data element in set DA0 =
{(i, j)|2 ≤ i ≤ 767, 1 ≤ j ≤ 1022} out of the input data domain
DA in Table 1 and discards the first two rows in the 2D grid of
Fig. 1. This guarantees the correctness of the data set sent to each
data port of the computation kernel. Due to the property of sten-
cil computation, the data elements accessed by an array reference
are in the same lexicographic order as the loop iteration (see details
in [11]). Our microarchitecture based on data streaming enforces
this order, as long as the input data stream is also in the lexico-
graphic order (i.e., data iterated from innermost loop to outermost
loop). The lexicographic order of input data is usually realized
without hardware overhead since it fits well with burst accesses to
external memory or inter-accelerator communication patterns (see
discussion in [11]). By providing the correct data set and correct
data order to the array references, our design can guarantee that as
the stencil window slides, the data elements received by the com-
putation kernel are always consistent with the array references.

3.3.2 Data Streaming without Stalling
One key challenge is to ensure that the data streaming structure

will not be stalled due to any FIFO emptiness or fullness. To pre-
vent FIFO emptiness, we can sort the data access offsets ~f of the
data array references in the descending lexicographic order when
we map them to data filters from 0 to n−1, e.g., (1, 0) → (0, 1) →
(0, 0) → (0,−1) → (−1, 0) in Fig. 5. To prevent FIFO fullness,

FIFO ID precedent/successive references FIFO size physical impl.
FIFO 0 A[i + 1][j]→ A[i][j + 1] 1023 BRAM
FIFO 1 A[i][j + 1]→ A[i][j] 1 register
FIFO 2 A[i][j]→ A[i][j − 1] 1 register
FIFO 3 A[i][j − 1]→ A[i− 1][j] 1023 BRAM

Table 2: Reuse FIFOs with nonuniform sizes calculated from max-
imum reuse distances of adjacent array references and mapped
to different physical implementations (block memory, distributed
memory, or register) if targeted an FPGA platform.

we calculate the maximum reuse distances of all the pairs of ad-
jacent array references and allocate reuse FIFO sizes accordingly,
as shown in Table 2 for the example in Listing 1. Detailed can be
found in [11].

3.3.3 Design Optimality
Minimum Reuse Buffer Size. Due to the linearity of maximum

reuse distances, the sum of the sizes of all the reuse FIFOs is equal
to the maximum reuse distance between array reference A0 and
An−1. Due to the sorting of array references by ~f in the descend-
ing lexicographic order, A0 is the earliest reference and An−1 is the

Memory System for Stencil Accesses to Array A in “DENOISE”
S = data path splitter

storage space for data reuse

A[0..767][0..1023]
FIFO_0 FIFO_3s0 s1 s2 s3 s4

ilt
er

_0

ilt
er

_1

ilt
er

_2

ilt
er

_3

ilt
er

_4

FIFO_1 FIFO_2

fi

A[i+1][j]

fi

A[i][j+1]

fi

A[i][j]

fi

A[i][j-1]

fi

A[i-1][j]

towards computation kernel

Figure 5: The example circuit structure of our memory system generated for array A in the stencil computation of Listing 1.

latest reference. Therefore, the total reuse buffer size is equal to the
maximum reuse distance between the earliest and latest references,
which is the theoretical minimum. As shown in Table 2 for the ex-
ample in Listing 1, the total size is 2048, the same as the minimum
value discussed in Section 2.3. If the maximum reuse distance is so
large that the buffer sizes exceed the on-chip memory capacity, our
microarchitecture allows tradeoff of offchip bandwidth occupation
for smaller memory usage (see discussion in [11]).

Minimum Number of Buffer Banks. The structure of our design
guarantees that for n array references, there are n− 1 buffer banks
(reuse FIFOs) as described in Section 3.1. It is the theoretical min-
imum value as discussed in Section 2.3.

Since our design achieves both the minimum reuse buffer size
and the minimum number of buffer banks, our microarchitecture is
optimal.

3.4 Insights Gained From RTL Simulation
Our microarchitecture is quite different from conventional de-

signs with centralized controllers [5–8]. The major tasks of a con-
ventional controller includes two aspects:

1. Filling up reuse buffers. Before the computation starts, the
controller will first fill reuse buffers with data elements needed
by the computation kernel.

2. Evict expired data from reuse buffers. The challenging part in
this function is when the reuse distance between array refer-
ences changes as the execution advances. This often happens
on a skewed data grid. In this case, the number of data ele-
ments stored in reuse buffers changes as time goes, and the
symmetry between read and write is broken.

There is no specific module that takes charge of these key tasks in
our microarchitecture. Instead, by observing the execution of our
design in RTL simulation, we found that these key tasks are done
automatically by the coordination of our distributed modules.

3.4.1 Automatic Filling of Reuse Buffers
The filling process of reuse buffers in our microarchitecture is

shown in Table 3. The data filter 4 associated with A[i−1][j] is first
stalled at cycle 1. This is when the filter 4 tries to send data A[0][1]
to the computation kernel but all the other data filters are bypassing
this data. As a result, the computation kernel will be waiting for
data from the other data filters and will not consume data from the
filter 4. This stalling will lead to filling up of data in the FIFO 3
between A[i − 1][j] and A[i][j − 1]. The other four filters will
keep the data stream advancing since all of them bypass the first
row in the data domain. 1023 cycles later, the filter 3 will try to to
send data A[1][0] to the computation kernel but will be stalled as
well. Then the FIFO 2 will start being filled up, and the data path
splitter s3 will stop sending data to FIFO 3. The following process
is similar until FIFO 1 and FIFO 0 are filled up consecutively, as
shown in Table 3. Then at cycle 2049, the filter 0 receives A[2][1]
and will send the data to the computation kernel. All the data at the
five inputs of the computation kernel become valid, and the kernel
consumes all the five data to produce the first output. Then all
the stalled filters can continue to send new data to the computation
kernel every clock cycle until the end of the iteration domain.

3.4.2 Automatic Adjustment of Reuse Data Amount
An application can have a skewed data grid as shown in Fig. 6.

This kind of application is usually needed when a rectangular grid

0 1024j

A[i-1][j-1]

A[i][j]

reuse distance = 1023A[i-1][j+1]

A[i+1][j-1]
i

A[i+1][j+1]

768

6

Figure 6: Non-rectangular iteration domain of an example applica-
tion with dynamically changeable reuse distance.

is iterated along the 45◦ direction after certain loop transform [17].
The skewed grid leads to the challenge that the number of data
stored in each reuse buffer will change as the iteration goes on,
and often requires a complex memory controlling scheme in a cen-
tralized design [5, 7, 8]. However, this difficulty can be automat-
ically handled by our distributed modules. Following the design
schematic in Section 3.1, we will order the array references and
map them to five filters 0–4. Among them, filter 2 is for reference
A[i][j] and filter 3 is for reference A[i − 1][j]. Note that ~h2 of
filter 2 advances ~h3 of filter 3 by one row when ~h2 and ~h3 are syn-
chronized by the computation kernel, as shown in Fig. 6. At each
turn around to the next row in the data domain, the filter 3 will fetch
one more data from the FIFO splitter than the filter 2 since the fil-
ter 3 is iterating over a longer row. Then the number of data stored
in FIFO 2 between filter 2 and filter 3 will be reduced by one. This
achieves the dynamic adaption of the number of data stored in a
reuse buffer to the change of reuse distance in the case of a skewed
data grid.

3.5 Miscellaneous Design Issues
3.5.1 Heterogeneous Mapping of Reuse Buffers

Reuse buffers in our design have different sizes, as shown in
Table 2, and may prefer different physical implementations. For
example, if the target platform is FPGA, the physical implemen-
tation candidates include block memory, distributed memory and
slice registers. They are efficient for a large buffer, a medium buffer
and a small buffer respectively. Table 2 shows the heterogeneous
mapping of reuse buffers to different physical implementation.

3.5.2 Data Filter in Polyhedral Domain
Note that though the data domains are rectangles in the example

of Listing 1, they could be any polyhedrons on a multi-dimensional
grid. Comparisons on loop bounds is not a universal solution to
data filtering. To select DAx out of DA, the data filter in our mi-
croarchitecture is implemented with a data switch controlled by two

clock data in filter status (forwarding/bypassing/stalled) FIFO status (# of data)
cycle stream filter 0 filter 1 filter 2 filter 3 filter 4 FIFO 0 FIFO 1 FIFO 2 FIFO 3

1 A[0][1] bypass bypass bypass bypass forward→stall 0 0 0 0
1024 A[1][0] bypass bypass bypass forward→stall stall 0 0 0 1023
1025 A[1][1] bypass bypass forward→stall stall stall 0 0 1 1023
1025 A[1][2] bypass forward→stall stall stall stall 0 1 1 1023
2028 A[2][1] bypass→forward stall→forward stall→forward stall→forward stall→forward 1023 1 1 1023

2049–... A[2][2]–... forward forward forward forward forward 1023 1 1 1023
Table 3: The execution flow of our microarchitecture in the example of Listing 1. The latency among the data streams at different modules
is ignored here for demonstration purpose only.

counters, let’s say input counter and output counter, as shown in
Fig. 7. The input counter iterates over the input data streamDA of

input counter output counter=q q

ADi xADi

q
inc

output stream

inc

input stream 1
p

0 discard
data switch

Figure 7: Structure of the data filter which can be applied to general
polyhedral data domains.

array A, e.g., A[0..767][0..1023]. The output counter iterates over
the data domainDAx of array reference Ax, e.g., A[2..767][1..1022].
The input counter proceeds when the filter receives an input data.
The output counter proceeds when its value is equal to the input
counter. It is also the condition that the data switch forwards the
input data to the output. In contrast, when the output counter is not
equal to the input counter, the data switch bypasses the input data.

4. DESIGN AUTOMATION FLOW
We develop a design automation flow to generate the complete

accelerator for a given stencil application, as shown in Fig. 8. It

Figure 8: Design automation flow of accelerator generation for
stencil computation.

starts from the original source codes of a user application, e.g., the
code in Listing 1. In the left branch, we first apply polyhedral anal-
ysis to extract the polyhedrons of data arrays with stencil accesses.
We calculate the data domain of each array reference and the reuse
distance of each pair of adjacent array references. This information
is used to instantiate the data filters and reuse FIFOs in our microar-
chitecture. Then the flow generates a microarchitecture instance,

e.g., the design in Fig. 5, with the memory systems optimized for
stencil accesses in user applications. In the right branch, we first ap-
ply source-to-source code transformation to extract the kernel code
with pure computation, e.g., Listing 2. Then high-level synthesis
is applied on the transformed code for a fully pipelined hardware
implementation of the computation kernel in RTL. Finally, we inte-
grate the microarchitecture with the computation kernel for a com-
plete accelerator with full pipelining and data reuse, e.g., the design
in Fig. 2.

5. EXPERIMENTS

5.1 Experiment Setup
Our polyhedral analysis in Fig. 8 is implemented by the LLVM-

Polly framework [18]. The kernel transformation is performed by
the open source compiler infrastructure ROSE [19], and the high-
level synthesis is performed by Xilinx Vivado HLS [10]. Although
our methodology is applicable to both ASIC and FPGA designs, we
choose FPGA as the target device in this work due to the availabil-
ity of downstream behavioral synthesis and implementation tools.
The Xilinx Virtex7 FPGA XC7VX485T and ISE 14.2 tool suite
[20] are used in our experiments. The target clock frequency is set
at 200MHz.

The benchmarks used in prior memory partitioning work [7, 8]
make up a rich set of real-life stencil computation kernels. Among
them, we select the more challenging benchmarks with non-rectangular
stencil windows for our experiments. DENOISE (2D/3D), RICIAN
(2D), and SEGMENTATION (3D) are from medical imaging [13].
BICUBIC (2D) is from bicubic interpolation process [15]. SOBEL
(2D) is from Sobel edge detection algorithm [16]. We choose the
more recent memory partitioning work [8] as our experiment base-
line.

5.2 Results
Original Target # of Banks Total Size

II II [8] Ours [8] Ours
DENOISE 5 1 5 4 2050 2048
RICIAN 4 1 5 3 2050 2048
SOBEL 9 1 9 8 2054 2050

BICUBIC 4 1 5 3 2050 2048
DENOISE_3D 7 1 7 6 2240 2048

SEGMENTATION 19 1 20 18 2630 2112
Table 4: High-level partitioning results.

The comparison results of memory partitioning are shown in Ta-
ble 4. We list the pipeline II of the original user codes which suf-
fer memory port contentions before memory partitioning, which is
equal to the number of memory load operations on the data array.
We also list the II that the computation kernel targets to achieve
via memory partitioning. The number and total size of reuse buffer
banks are reported for both [8] and our method. The buffer size is
in the unit of data element. As shown in Tabel 4, our method saves
the partitioning bank number of all of the six benchmarks. In addi-
tion, our method does not need the padding technique in [8] which
increases the grid size at certain dimensions to relax the partition-
ing complexity. Our methods saves the buffer size, especially when
the padding introduces more overhead in a high-dimensional data
grid, e.g., Fig. 4(c).

The post-synthesis results are listed in Table 5. Physical resource
usage (block RAMs, logic slices, and DSPs) and timing informa-

BRAM Slice DSP CP (ns)
DAC’13 5 703 5 4.502

DENOISE ours 2 636 0 4.519
comp.(%) -60 -9.5 -100 0.37
DAC’13 5 582 4 4.472

RICIAN ours 2 544 0 4.337
comp.(%) -60 -6.5 -100 -3.02
DAC’13 9 1937 9 4.416

SOBEL ours 2 1088 0 4.239
comp.(%) -78 -43.8 -100 -4.01
DAC’13 5 535 4 4.309

BICUBIC ours 2 493 0 4.196
comp.(%) -40 -7.8 -100 -2.62
DAC’13 7 980 7 4.656

DENOISE_3D ours 2 859 0 4.762
comp.(%) -71 -12.3 -100 2.27
DAC’13 20 7533 19 4.995

SEGMENTATION_3D ours 2 2251 0 4.985
comp.(%) -90 -70.1 -100 -0.2

Average(%) -66 -25 -100 -1.2
Table 5: Synthesis experimental results.

tion are extracted from Xilinx ISE report. As shown in Table 5, we
use 66% fewer block RAMs than [8]. This stems from 1) the min-
imum number of buffer banks achieved, and 2) the heterogeneous
mapping of buffer banks to variable resources in addition to block
RAMs as demonstrated in Table 2. We also use 25% fewer logic
slices than [8], even though we implement some of the small reuse
buffers in registers. That is because we avoid the modulo schedul-
ing in conventional uniform memory partitioning which generates
a hardware transformer to map the original data address to the bank
ID and local address via a complex calculation involving multipli-
cation and division. Instead our memory system only needs coun-
ters iterating over the data domains in the lexicographic order. This
advantage is also reflected by the complete elimination of DPSs
in our method. The clock period does not show too much differ-
ence between [8] and our method since the back-end flow will stop
optimization as long as it meets the 200MHz target. However, our
method generally has larger slacks from the target 5.0ns as shown in
Table 5. It is mainly due to the distributed structure in our method.
We tried to use the Xilinx XPower Analyzer for power estimation,
but found that the FPGA power is dominated by the static power,
and is almost invariant with custom circuits. If power gating is
available in FPGA, the FPGA power will be proportional to re-
source usage, which is covered by Table 5.

6. CONCLUSIONS AND FUTURE WORK
In this work, we propose non-uniform partitioning which opens

a new design space compared to conventional cyclic partitioning
framework. As a starting point, we use stencil computation as the
initial design target and show a novel memory system that works
with non-uniform sizes of reuse buffer. The memory system in
the extended design space can achieve the optimal solution with
the minimum reuse buffer size and the minimum number of buffer
banks. We develop a design automation flow that generates a mi-
croarchitecture with our memory systems and integrates it with the
computation kernel for a complete design. Experimental results
show that our method outperforms the recent memory partitioning
work in terms of utilization of variable FPGA resources.

As this is the first work on non-uniform memory partitioning, our
primary goal is to show the potential of this new approach. Though
stencil computation is a popular application domain and attracts
the attention of most memory partitioning work, it is still impor-
tant to extend non-uniform memory partitioning to general cases.
Our data streaming method may not be the only solution for utiliz-
ing the non-uniform reuse buffers. A modified modulo scheduling
extended from conventional uniform memory partitioning is also a
good candidate. We believe that there are many opportunities in
future research.

7. ACKNOWLEDGEMENTS
The authors would like to thank Yuxin Wang for sharing the

synthesizable codes transformed by [8]. The authors would also
like to thank Xilinx for equipment donation and financial contribu-
tions. This work is partially supported by the Center for Domain-
Specific Computing (CDSC), and C-FAR, one of six centers of
STARnet, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA.

8. REFERENCES
[1] Y.-t. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, and

Y. Zou, “Accelerator-Rich CMPs: From Concept to Real Hardware,”
in International Conference on Computer Design, 2013.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang, “High-Level Synthesis for FPGAs: From Prototyping to
Deployment,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491, Apr.
2011.

[3] J. Cong, P. Zhang, and Y. Zou, “Optimizing memory hierarchy
allocation with loop transformations for high-level synthesis,” in
Design Automation Conference, 2012, pp. 1229–1234.

[4] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong,
“Polyhedral-based data reuse optimization for configurable
computing,” Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays - FPGA ’13, p. 29,
2013.

[5] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic memory
partitioning and scheduling for throughput and power optimization,”
in International Conference on Computer-Aided Design, 2009, p.
697.

[6] Y. Wang, P. Zhang, C. Xu, and J. Cong, “An integrated and
automated memory optimization flow for FPGA behavioral
synthesis,” in Asia and South Pacific Design Automation Conference,
Jan. 2012, pp. 257–262.

[7] P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang, and J. Cong, “Memory
partitioning and scheduling co-optimization in behavioral synthesis,”
in International Conference on Computer-Aided Design, 2012, pp.
488–495.

[8] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory
partitioning for multidimensional arrays in high-level synthesis,” in
Design Automation Conference, 2013, p. 1.

[9] Y. Ben-Asher and N. Rotem, “Automatic memory partitioning,” in
International Conference on Hardware/Software Codesign and
System Synthesis, 2010, p. 155.

[10] Xilinx, “Vivado High-Level Synthesis.” [Online]. Available:
http://www.xilinx.com/products/design-tools/vivado/integration/esl-
design/index.htm

[11] J. Cong, P. Li, B. Xiao, and P. Zhang, “An Optimal Microarchitecture
for Stencil Computation Acceleration Based on Non-Uniform
Partitioning of Data Reuse Buffers,” Computer Science Department,
UCLA, TR140009, Tech. Rep., 2014. [Online]. Available:
http://fmdb.cs.ucla.edu/Treports/140009.pdf

[12] T. Henretty, J. Holewinski, N. Sedaghati, L.-N. Pouchet, A. Rountev,
and P. Sadayappan, “Stencil Domain Specific Language (SDSL) User
Guide 0.2.1 draft,” OSU TR OSU-CISRC-4/13-TR09, Tech. Rep.,
2013.

[13] J. Cong, V. Sarkar, G. Reinman, and A. Bui, “Customizable
Domain-Specific Computing,” IEEE Design and Test of Computers,
vol. 28, no. 2, pp. 6–15, Mar. 2011.

[14] A. A. Nacci, V. Rana, F. Bruschi, D. Sciuto, I. Beretta, and
D. Atienza, “A high-level synthesis flow for the implementation of
iterative stencil loop algorithms on FPGA devices,” in Design
Automation Conference, 2013, p. 1.

[15] “Bicubic interpolation.” [Online]. Available: http://www.mpi-
hd.mpg.de/astrophysik/HEA/internal/Numerical_Recipes/f3-6.pdf

[16] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: A Tool for
Improved Derivation of Process Networks,” EURASIP Journal on
Embedded Systems, vol. 2007, pp. 1–13, 2007.

[17] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong,
“Improving high level synthesis optimization opportunity through
polyhedral transformations,” in International Symposium on FPGAs,
2013, p. 9.

[18] “LLVM-polly.” [Online]. Available:
http://llvm.org/svn/llvm-project/polly/

[19] “ROSE compiler infrastucture.” [Online]. Available:
http://rosecompiler.org/

[20] Xilinx, “Virtex-7 FPGA data sheets.” [Online]. Available:
http://www.xilinx.com/support/documentation/7_series.htm

