Pd/δ-MnO2 nanoflower arrays cordierite monolithic catalyst toward toluene and o-xylene combustion

Yongfeng Li, Qianyan Liao, Weizhao Ling, Fan Ye, Fangfang Liu, Xipeng Zhang, Jiajun He, Gao Cheng
2022 Frontiers in Chemistry  
Exploring high-efficiency and stable monolithic structured catalysts is vital for catalytic combustion of volatile organic compounds. Herein, we prepared a series of Pd/δ-MnO2 nanoflower arrays monolithic integrated catalysts (0.01–0.07 wt% theoretical Pd loading) via the hydrothermal growth of δ-MnO2 nanoflowers onto the honeycomb cordierite, which subsequently served as the carrier for loading the Pd nanoparticles (NPs) through the electroless plating route. Moreover, we characterized the
more » ... lting monolithic integrated catalysts in detail and evaluated their catalytic activities for toluene combustion, in comparison to the controlled samples including only Pd NPs loading and the δ-MnO2 nanoflower arrays. Amongst all the monolithic samples, the Pd/δ-MnO2 nanoflower arrays monolithic catalyst with 0.05 wt% theoretical Pd loading delivered the best catalytic performance, reaching 90% toluene conversion at 221°C at a gas hourly space velocity (GHSV) of 10,000 h−1. Moreover, this sample displayed superior catalytic activity for o-xylene combustion under a GHSV of 10,000 h−1. The monolithic sample with optimal catalytic activity also displayed excellent catalytic stability after 30 h constant reaction at 210 and 221°C.
doi:10.3389/fchem.2022.978428 fatcat:4aylh65xanhxnmhvc3fhfajfzu