Mechanism of selective killing by dilinoleoylglycerol of cells transformed by the E1A gene of adenovirus type 12

A Matsuzaki, H Shimura, A Okuda, M Ohtsu, M Sasaki, K Onodera, G Kimura
1989 Cancer Research  
Rat 3Y1 fibroblasts transformed by the E1A gene of adenovirus type 12 (E1A-3Y1 cells) are highly sensitive to the cell-killing effect of 1,3-dilinoleoylglycerol (DLG) administered in a culture medium, whereas the parental 3Y1 cells are less sensitive (H. Shimura et al., Cancer Res., 48: 578-583, 1988). The selective cytotoxicity of DLG to E1A-3Y1 cells was markedly reduced by the simultaneous administration of nonspecific antioxidants such as vitamin E, butylated hydroxytoluene, and ascorbic
more » ... ne, and ascorbic acid. Specific scavengers for oxygen radicals had no effect. Lipoxygenase inhibitors (nordihydroguaiaretic acid, esculetin, and baicalein) reduced the DLG-mediated selective cytotoxicity, whereas cyclooxygenase inhibitors (acetylsalicylic acid and indomethacin) showed no effect. The intracellular and extracellular contents of the products from lipid peroxidation as measured by the thiobarbituric acid test were significantly greater in E1A-3Y1 cells than in the parental 3Y1 cells. In comparison with DLG, linoleic acid and monolinoleoylglycerol were equally toxic to E1A-3Y1 and parental 3Y1, and trilinoleoylglycerol was weakly toxic to both types of cells. Scanning electron microscopy revealed that numerous holes about 0.2 micron in diameter were scattered all over the surface of the E1A-3Y1 cells after treating the cultures with DLG. These results suggest that; (a) the DLG-mediated cytotoxicity to the E1A-transformed cells is attributable to lipid peroxidation; (b) the structural property of DLG is essential to the E1A specificity of cytotoxicity; and finally (c) the destruction of the cell membrane is the basis of cytotoxicity of DLG.
pmid:2529026 fatcat:blxflnd3urhcvpida3d5fuu5ci