Multi-view SA-LA Net: A framework for simultaneous segmentation of RV on multi-view cardiac MR Images [article]

Sana Jabbar, Syed Talha Bukhari, Hassan Mohy-ud-Din
2021 arXiv   pre-print
We proposed a multi-view SA-LA model for simultaneous segmentation of RV on the short-axis (SA) and long-axis (LA) cardiac MR images. The multi-view SA-LA model is a multi-encoder, multi-decoder U-Net architecture based on the U-Net model. One encoder-decoder pair segments the RV on SA images and the other pair on LA images. Multi-view SA-LA model assembles an extremely rich set of synergistic features, at the root of the encoder branch, by combining feature maps learned from matched SA and LA
more » ... ardiac MR images. Segmentation performance is further enhanced by: (1) incorporating spatial context of LV as a prior and (2) performing deep supervision in the last three layers of the decoder branch. Multi-view SA-LA model was extensively evaluated on the MICCAI 2021 Multi- Disease, Multi-View, and Multi- Centre RV Segmentation Challenge dataset (M&Ms-2021). M&Ms-2021 dataset consists of multi-phase, multi-view cardiac MR images of 360 subjects acquired at four clinical centers with three different vendors. On the challenge cohort (160 subjects), the proposed multi-view SA-LA model achieved a Dice Score of 91% and Hausdorff distance of 11.2 mm on short-axis images and a Dice Score of 89.6% and Hausdorff distance of 8.1 mm on long-axis images. Moreover, multi-view SA-LA model exhibited strong generalization to unseen RV related pathologies including Dilated Right Ventricle (DSC: SA 91.41%, LA 89.63%) and Tricuspidal Regurgitation (DSC: SA 91.40%, LA 90.40%) with low variance (std_DSC: SA <5%, LA<6%).
arXiv:2110.00682v1 fatcat:2oy7ytmuhjfvjazr4kn3mrpfz4