Nanostructural metallic materials: Structures and mechanical properties

L.G. Sun, G. Wu, Q. Wang, J. Lu
2020 Materials Today  
The trade-off of strength and ductility of metals has long plagued materials scientists. To resolve this issue, great efforts have been devoted over the past decades to developing a variety of technological pathways for effectively tailoring the microstructure of metallic materials. Here, we review the recent advanced nanostructure design strategies for purposely fabricating heterogeneous nanostructures in crystalline and non-crystalline metallic materials. Several representative structural
more » ... tive structural approaches are introduced, including (1) hierarchical nanotwinned (HNT) structures, extreme grain refinement and dislocation architectures etc. for crystalline metals; (2) nanoglass structure for non-crystalline alloys, i.e. metallic glasses (MGs); and (3) a series of supra-nano-dual-phase (SNDP) nanostructures for composite alloys. The mechanical properties are further optimized by manipulating these nanostructures, especially coupling multiple advanced nanostructures into one material. Particularly, the newly developed SNDP nanostructures greatly enrich the nanostructure design strategies by utilizing supranano sized crystals and MGs, which exhibit unique size and synergistic effects. The origins of these gratifying properties are discussed in this review. Furthermore, based on a comprehensive understanding of microscopic mechanisms, a broad vision of strategies towards high strength and high ductility are proposed to promote future innovations. A schematic illustration of some nanostructures tailored in crystalline/non-crystalline/composite metallic materials for high strength and high ductility. RESEARCH Materials Today d Volume xxx, Number xx d xxxx 2020 RESEARCH: Review FIGURE 2 A diagram exhibiting the spatial distribution of twin planes. (a and b) The twin planes perpendicular to a same reference plane. (c and d) The threedimensional stacking of tetrahedrons showing a three-dimensional distribution of twin planes. Materials Today d Volume xxx, Number xxx d xxxx 2020 RESEARCH RESEARCH: Review FIGURE 3 The examples of HNT structures in metals with good mechanical properties. (a) TRIP-gradient steels [22]. Copyright 2016, Elsevier. (b) TWIP steels [24].
doi:10.1016/j.mattod.2020.04.005 fatcat:sd4rnr4565dx3bso6ztnlk2kaq