Extended chiral algebras in the SU(2)0WZNW model

Alexander Nichols
2002 Journal of High Energy Physics  
We investigate the W-algebras generated by the integer dimension chiral primary operators of the SU(2)_0 WZNW model. These have a form almost identical to that found in the c=-2 model but have, in addition, an extended Kac-Moody structure. Moreover on Hamiltonian reduction these SU(2)_0 W-algebras exactly reduce to those found in c=-2. We explicitly find the free field representations for the chiral j=2 and j=3 operators which have respectively a fermionic doublet and bosonic triplet nature.
more » ... triplet nature. The correlation functions of these operators accounts for the rational solutions of the Knizhnik-Zamolodchikov equation that we find. We explicitly compute the full algebra of the j=2 operators and find that the associativity of the algebra is only guaranteed if certain null vectors decouple from the theory. We conjecture that these algebras may produce a quasi-rational conformal field theory.
doi:10.1088/1126-6708/2002/04/056 fatcat:tmv3v45lvrfkxdxgte65sxyydy