Secondary Metabolite Production and Terpenoid Biosynthesis in Endophytic Fungi Cladosporium cladosporioides Isolated from Wild Cymbopogon martinii (Roxb.) Wats

Hemalatha Jayaram, Vinutha Marigowda, Kunigal Jagadishchandra Thara Saraswathi
2021 Microbiology Research  
Endophytic fungi Cladosporium cladosporioides (F1-MH810309) and Cladosporium tenuissimum (F2-MN715834) from the leaf of wild Cymbopogon martinii (MT90507) were isolated and selected based on the persistent occurrence during different seasons of the year. They were identified based on the morphological features and molecular characterization (ITS sequence), and later deposited at NCBI. Phytochemical studies on F1, F2 and host extracts showed the presence of alkaloids, flavonoids, phenols,
more » ... ids and tannins. The GC-MS of F1 extract (control) under the axenic condition revealed compounds like hexadecane, heptadecane,2,4-Ditert-butylphenol, E-14 hexadecenal, geraniol, geranyl acetate and cubenol similar to the host. The GC-MS of F2 extract (control) revealed metabolites that were unique. Further, both F1 and F2 were cultured in the supplementation of different concentrations (5%, 10%, 15% and 20%) of the host plant extract (an-axenic condition). The GC-MS of F1 extracts (test) exhibited good growth and showed the gradual increased production of terpenoid compounds whereas the F2 (test) did not show any growth. These compounds such as hyrdoxymenthol, nor-borneol, cedralacetate, α-cyclogeraniol, campesterol, β-cyclogeraniol, linalool oxide,2,3-boranediol, citronellyltiglate and 2,3-pinanediol were produced in a minor quantity and were known as biotransformed forms of the precursor compounds present in the host extract. In comparison, only F1 was able to produce terpenoids similar to the host species both in axenic and an-axenic conditions. Hence from the current study, the endophytic fungus F1 isolated from wild C. martinii for the first time can serve as a better resource for the bioprospection of an important terpenoid and its metabolites.
doi:10.3390/microbiolres12040059 fatcat:frjdmuil4baorfknnnbdxng424