Patient-Specific Seizure Detection from Intra-cranial EEG Using High Dimensional Clustering

Haimonti Dutta, David Waltz, Karthik M. Ramasamy, Phil Gross, Ansaf Salleb-Aouissi, Hatim Diab, Manoj Pooleery, Catherine A. Schevon, Ronald Emerson
<span title="">2010</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ijxfcr5nm5bezm7iddvoa2pajm" style="color: black;">2010 Ninth International Conference on Machine Learning and Applications</a> </i> &nbsp;
Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz)
more &raquo; ... roducing an avalanche of time series data. We explore subsets of this data to build seizure detectors -we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icmla.2010.119">doi:10.1109/icmla.2010.119</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/icmla/DuttaWRGSDPSE10.html">dblp:conf/icmla/DuttaWRGSDPSE10</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/rtu22cq25jgrhdp6jcd36on2ca">fatcat:rtu22cq25jgrhdp6jcd36on2ca</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20121220224737/http://www1.ccls.columbia.edu/~dutta/icmla.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/42/62/4262c9d1a328cec4b1506fc9777dde0d638ca05a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icmla.2010.119"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>