Numerical Approximation of the Space Fractional Cahn-Hilliard Equation

Zhifeng Weng, Langyang Huang, Rong Wu
2019 Mathematical Problems in Engineering  
In this paper, a second-order accurate (in time) energy stable Fourier spectral scheme for the fractional-in-space Cahn-Hilliard (CH) equation is considered. The time is discretized by the implicit backward differentiation formula (BDF), along with a linear stabilized term which represents a second-order Douglas-Dupont-type regularization. The semidiscrete schemes are shown to be energy stable and to be mass conservative. Then we further use Fourier-spectral methods to discretize the space.
more » ... tize the space. Some numerical examples are included to testify the effectiveness of our proposed method. In addition, it shows that the fractional order controls the thickness and the lifetime of the interface, which is typically diffusive in integer order case.
doi:10.1155/2019/3163702 fatcat:einer5ur3zgenig7lqhp4igrru