Perceptual Loss based Speech Denoising with an ensemble of Audio Pattern Recognition and Self-Supervised Models [article]

Saurabh Kataria, Jesús Villalba, Najim Dehak
<span title="2020-10-22">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Deep learning based speech denoising still suffers from the challenge of improving perceptual quality of enhanced signals. We introduce a generalized framework called Perceptual Ensemble Regularization Loss (PERL) built on the idea of perceptual losses. Perceptual loss discourages distortion to certain speech properties and we analyze it using six large-scale pre-trained models: speaker classification, acoustic model, speaker embedding, emotion classification, and two self-supervised speech
more &raquo; ... ders (PASE+, wav2vec 2.0). We first build a strong baseline (w/o PERL) using Conformer Transformer Networks on the popular enhancement benchmark called VCTK-DEMAND. Using auxiliary models one at a time, we find acoustic event and self-supervised model PASE+ to be most effective. Our best model (PERL-AE) only uses acoustic event model (utilizing AudioSet) to outperform state-of-the-art methods on major perceptual metrics. To explore if denoising can leverage full framework, we use all networks but find that our seven-loss formulation suffers from the challenges of Multi-Task Learning. Finally, we report a critical observation that state-of-the-art Multi-Task weight learning methods cannot outperform hand tuning, perhaps due to challenges of domain mismatch and weak complementarity of losses.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2010.11860v1">arXiv:2010.11860v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ofm2by6aynbixakhtck2cbpfni">fatcat:ofm2by6aynbixakhtck2cbpfni</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201025123537/https://arxiv.org/pdf/2010.11860v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/af/80/af803a305d5f1b079bb55a9f0ceeb5acf3726a1a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2010.11860v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>