A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Non-TI Clustering in the Context of Social Networks
2020
Procedia Computer Science
Traditional clustering algorithms like K-medoids and DBSCAN take distances between objects as input and find clusters of objects. Distance functions need to satisfy the triangle inequality (TI) property, but sometimes TI is violated and, thus, may compromise the quality of resulting clusters. However, there are scenarios, for example in the context of social networks, where TI does not hold but a meaningful clustering is still possible. This paper investigates the consequences of TI violation
doi:10.1016/j.procs.2020.03.031
fatcat:r32gem4hvjd3vcvqbr6wqu5tj4