Modification of Hidden Layer Weight in Extreme Learning Machine Using Gain Ratio

Fetty Tri Anggraeny, Intan Yuniar Purbasari, J. Jamari, R. Handogo, E. Suryani
2016 MATEC Web of Conferences  
Extreme Learning Machine (ELM) is a method of learning feed forward neural network quickly and has a fairly good accuracy. This method is devoted to a feed forward neural network with one hidden layer where the parameters (i.e. weight and bias) are adjusted one time randomly at the beginning of the learning process. In neural network, the input layer is connected to all characteristics/features, and the output layer is connected to all classes of species. This research used three datasets from
more » ... hree datasets from UCI database, which were Iris, Breast Wisconsin, and Dermatology, with each dataset having several features. Each characteristic/feature of the data has a role in the process of classification levels, starting from the most influencing role to non-influencing at all. Gain ratio was used to extract each feature role on each datasets. Gain ratio is a method to extract feature role in order to develop a decision tree structure. In this study, ELM structure has been modified, where the random weights of the hidden layer were adjusted to the level of each feature role in determining the species class, so as to improve the level of training and testing accuracy. The proposed method has higher classification accuracy rate than basic ELM on all three datasets, which were 99%, 96%, and 82%, respectively.
doi:10.1051/matecconf/20165803010 fatcat:2pcisdcxvnbtvhdnwamiptidge