A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
On Human-Aligned Risk Minimization
2019
Neural Information Processing Systems
The statistical decision theoretic foundations of modern machine learning have largely focused on the minimization of the expectation of some loss function for a given task. However, seminal results in behavioral economics have shown that human decision-making is based on different risk measures than the expectation of any given loss function. In this paper, we pose the following simple question: in contrast to minimizing expected loss, could we minimize a better human-aligned risk measure?
dblp:conf/nips/LeqiPR19
fatcat:ezw4hcl2i5bhtbecilb7ziduri