Nonlinear Control for Reconfiguration of Unmanned-Aerial-Vehicle Formation

Atilla Dogan, Sriram Venkataramanan
2005 Journal of Guidance Control and Dynamics  
The design of a nonlinear controller to reconfigure a formation of a group of unmanned aerial vehicles (UAVs) is described. Reconfiguration of the formation might be needed to maintain the efficiency of the formation. Nonlinear six-degree-of-freedom, rigid-body, equations of motion developed in the virtual leader (VL)'s frame are used to model the UAVs in the formation. The formulation of the formation flight in VL frame enables the formationkeeping and formation reconfiguration to be treated
more » ... ion to be treated in the same framework. The nonlinear equations of motion contain the wind effect terms and their time derivatives to represent the aerodynamic coupling involved in close formation flight. These wind terms are obtained by using an averaging technique that computes the effective induced wind components and wind gradients in the UAV's body frame. Dynamics of the engine and the actuators are also included in the study. An algorithm that generates a safe and feasible trajectory, given the current position and the position to go to, has been developed. A combination of integral control, optimal LQR design, and nonlinear state feedback linearization is used in the design of the position-tracking controller. Simulation results demonstrate that the controller is capable of producing a smooth reconfiguration without using the information of the vortex-induced wind effects on the follower UAV.
doi:10.2514/1.8760 fatcat:zrjiaro5bvhgbcmrggfsevzpfa