A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Deep Reinforcement Learning
[article]
2018
arXiv
pre-print
We discuss deep reinforcement learning in an overview style. We draw a big picture, filled with details. We discuss six core elements, six important mechanisms, and twelve applications, focusing on contemporary work, and in historical contexts. We start with background of artificial intelligence, machine learning, deep learning, and reinforcement learning (RL), with resources. Next we discuss RL core elements, including value function, policy, reward, model, exploration vs. exploitation, and
arXiv:1810.06339v1
fatcat:kp7atz5pdbeqta352e6b3nmuhy