3D motion tracking display enabled by magneto-interactive electroluminescence

Seung Won Lee, Soyeon Baek, Sung-Won Park, Min Koo, Eui Hyuk Kim, Seokyeong Lee, Wookyeong Jin, Hansol Kang, Chanho Park, Gwangmook Kim, Heechang Shin, Wooyoung Shim (+3 others)
2020 Nature Communications  
AbstractDevelopment of a human-interactive display enabling the simultaneous sensing, visualisation, and memorisation of a magnetic field remains a challenge. Here we report a skin-patchable magneto-interactive electroluminescent display, which is capable of sensing, visualising, and storing magnetic field information, thereby enabling 3D motion tracking. A magnetic field-dependent conductive gate is employed in an alternating current electroluminescent display, which is used to produce
more » ... tile and rewritable magnetic field-dependent display. By constructing mechanically flexible arrays of magneto-interactive displays, a spin-patchable and pixelated platform is realised. The magnetic field varying along the z-axis enables the 3D motion tracking (monitoring and memorisation) on 2D pixelated display. This 3D motion tracking display is successfully used as a non-destructive surgery-path guiding, wherein a pathway for a surgical robotic arm with a magnetic probe is visualised and recorded on a display patched on the abdominal skin of a rat, thereby helping the robotic arm to find an optimal pathway.
doi:10.1038/s41467-020-19523-0 pmid:33247086 fatcat:yw3co7nplrcr5e2hsjqrymnqs4