Simulação dos processos de migração e relexação energética em sistemas orgânicos pi-conjugados emissores de luz
[thesis]
Angelo Danilo Faceto
__________________________________________________________________vii ABSTRACT In the present work, the Monte Carlo method is employed to simulate the excitation spectral diffusion process in light emitting polymeric systems. The methodology employed a competition among the internal intra-molecular vibrational relaxation, the inter-molecular incoherent energy transference via Förster mechanism and the final process that may be a radiative emission or a non radiative relaxation through a
more »
... ion center. This work main objective is to compare the simulation results with the experiments of absorption, optic excitement and luminescence carried on the IFSC throughout the last years or proceeding from specialized literature. Moreover, the simulation intends to elucidate the nature of the photophysical processes in organic semiconductors and to test the validity of existing theories, what it is essential for the application of this branch of materials as devices in the future. Special attention is given in the analysis of the behavior of the time-resolved luminescence in systems where the energy transfer is carried through a matrix of conjugated segments distributed randomly and acceptor molecules (impurities or defects) coupled by dipole interaction. The comparison of the simulation results with the experimental ones allowed to prove the validity of the model, the used program and to better understand characteristic of parameters for conjugated polymers which are still studied. Different the energy distributions of electronic states, molecular position and orientation are used in order to simulate molecular configurations obtained by different sample preparation methodologies and luminescence suppressor centers. With the simulation, it was possible to reproduce with success the experimental spectra of luminescence, absorption and selective excitation measurements in polymers conjugated described in literature. Besides, the simulation allowed to explain resulted related to the decrease of luminescence efficiency with the increase of the energy of the excitation light, as well as the blue shift and broadening of the spectral lines of conjugated polymer emission with the increase of the density. The characteristic curves of quantum efficiency with the variation of the excitation energy and the not exponential characteristics of the time solved emission intensity curves have been reproduced. Finally, it was possible to study the photophysical processes present in organic heterostructures having molecular level control of the properties of emission via changing the Förster type energy transfer processes between emitting polymers and an azodye. The control photophysical process of the luminescent polymer was accomplished by changing both the orientation and position of the azomolecule in an acceptor layer relative the emitting polymer.
doi:10.11606/d.76.2007.tde-06092007-104908
fatcat:zbxt2vontzf7fiyvn4ebviyad4