Robotic selection for the rapid development of stable CHO cell lines for HIV vaccine for production [article]

Sara M. O'Rourke, Gabriel Byrne, Tatsuno Gwen, Wright Meredith, Bin Yu, Kathryn A Mesa, Rachel C Doran, David Alexander, Phillip W Berman
2018 bioRxiv   pre-print
The production of envelope glycoproteins (Envs) for use as HIV vaccines is challenging. The yield of Envs expressed in stable Chinese Hamster Ovary (CHO) cell lines is typically 10-100 fold lower than other glycoproteins of pharmaceutical interest. Moreover, Envs produced in CHO cells are typically enriched for sialic acid containing glycans compared to virus associated Envs that possess mainly high-mannose carbohydrates. This difference alters the net charge and biophysical properties of Envs
more » ... nd impacts their antigenic structure. Here we employ a novel gene-edited CHO cell line (MGAT1- CHO) to address the problems of low expression, high sialic acid content, and poor antigenic structure. We demonstrate that stable cell lines expressing high levels of gp120, potentially suitable for biopharmaceutical production can be created using the MGAT1- CHO cell line. We also show that the efficiency of this process can be greatly improved with robotic selection. Finally, we describe a MGAT1- CHO cell line expressing A244-rgp120 that exhibits improved binding of three major families of bN-mAbs compared to Envs produced in normal CHO cells. The new strategy described has the potential to eliminate the bottleneck in HIV vaccine development that has limited the field for more than 25 years.
doi:10.1101/317537 fatcat:os2dij3tkfbs5avzoqn77r6mza