Workspace monitoring and planning for safe mobile manipulation [article]

Christian Frese, Angelika Zube, Christian Frey
2020 arXiv   pre-print
In order to enable physical human-robot interaction where humans and (mobile) manipulators share their workspace and work together, robots have to be equipped with important capabilities to guarantee human safety. The robots have to recognize possible collisions with the human co-worker and react anticipatorily by adapting their motion to avert dangerous situations while they are executing their task. Therefore, methods have been developed that allow to monitor the workspace of mobile
more » ... rs using multiple depth sensors to gather information about the robot environment. This encompasses both 3D information about obstacles in the close robot surroundings and the prediction of obstacle motions in the entire monitored space. Based on this information, a collision-free robot motion is planned and during the execution the robot continuously reacts to unforeseen dangerous situations by adapting its planned motion, slowing down or stopping. For the demonstration of a manufacturing scenario, the developed methods have been implemented on a prototypical mobile manipulator. The algorithms handle both robot platform and manipulator in a uniform manner so that an overall optimization of the path and of the collision avoidance behavior is possible. By integrating the monitoring, planning, and interaction control components, the task of grasping, placing and delivering objects to humans in a shared workspace is demonstrated.
arXiv:2006.01546v1 fatcat:idpwi23ujnhbtgozo26vvhl4gm