Human Embryonic Stem Cells - a Potential Vaccine for Ovarian Cancer

Zu-Juan Zhang, Xin-Hua Chen, Xiao-Hong Chang, Xue Ye, Yi Li, Heng Cui
2012 Asian Pacific Journal of Cancer Prevention  
Objective: To investigate the therapeutic potential of human embryonic stem cells (hESCs) as a vaccine to induce an immune response and provide antitumor protection in a rat model. Methods: Cross-reactivity of antigens between hESCs and tumour cells was screened by immunohistochemistry. Fischer 344 rats were divided into 7 groups, with 6 rats in each, immunized with: Group 1, hESC; Group 2, pre-inactivated mitotic NuTu-19; Group 3 PBS; Group 4, hESC; Group 5, pre-inactivated mitotic NuTu-19;
more » ... mitotic NuTu-19; Group 6, PBS; Group 7, hESC only. At 1 (Groups 1-3) or 4 weeks (Groups 4-6) after the last vaccination, each rat was challenged intraperitoneally with NuTu-19. Tumor growth and animal survival were closely monitored. Rats immunized with H9 and NuTu-19 were tested by Western blot analysis of rat orbital venous blood for cytokines produced by Th1 and Th2 cells. Results: hESCs presented tumour antigens, markers, and genes related to tumour growth, metastasis, and signal pathway interactions. The vaccine administered to rats in Group 1 led to significant antitumor responses and enhanced tumor rejection in rats with intraperitoneal inoculation of NuTu-19 cells compared to control groups. In contrast, rats in Group 4 did not display any elevation of antitumour responses. Western blot analysis found cross-reactivity among antibodies generated between H9 and NuTu-19. However, the cytokines did not show significant differences, and no side effects were detected. Conclusion: hESC-based vaccination is a promising modality for immunotherapy of ovarian cancer.
doi:10.7314/apjcp.2012.13.9.4295 fatcat:kmxplianvnckjmultjrundh2rq