A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
The spectral theory of distributive continuous lattices
1978
Transactions of the American Mathematical Society
In this paper various properties of the spectrum (i.e. the set of prime elements endowed with the hull-kernel topology) of a distributive continuous lattice are developed. It is shown that the spectrum is always a locally quasicompact sober space and conversely that the lattice of open sets of a locally quasicompact sober space is a continuous lattice. Algebraic lattices are a special subclass of continuous lattices and the special properties of their spectra are treated. The concept of the
doi:10.1090/s0002-9947-1978-0515540-7
fatcat:jkofdllhkncqjk2zw3yoysmcfm