Scaling up Probabilistic Inference in Linear and Non-Linear Hybrid Domains by Leveraging Knowledge Compilation [article]

Anton Fuxjaeger, Vaishak Belle
2020 arXiv   pre-print
Weighted model integration (WMI) extends weighted model counting (WMC) in providing a computational abstraction for probabilistic inference in mixed discrete-continuous domains. WMC has emerged as an assembly language for state-of-the-art reasoning in Bayesian networks, factor graphs, probabilistic programs and probabilistic databases. In this regard, WMI shows immense promise to be much more widely applicable, especially as many real-world applications involve attribute and feature spaces that
more » ... are continuous and mixed. Nonetheless, state-of-the-art tools for WMI are limited and less mature than their propositional counterparts. In this work, we propose a new implementation regime that leverages propositional knowledge compilation for scaling up inference. In particular, we use sentential decision diagrams, a tractable representation of Boolean functions, as the underlying model counting and model enumeration scheme. Our regime performs competitively to state-of-the-art WMI systems but is also shown to handle a specific class of non-linear constraints over non-linear potentials.
arXiv:1811.12127v2 fatcat:4ntcctbcvnfgnmtc5bgwtovgdi