Liquid-crystal point-diffraction interferometer

Carolyn R. Mercer, Katherine Creath
1994 Optics Letters  
A new instrument, the liquid crystal point diffraction interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffraction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with
more » ... ated data reduction. This dissertation describes the theory of both the PDI and liquid crystal phase control. The design considerations for the LCPDI are presented, including manufacturing considerations. The operation and performance of the LCPDI are discussed, including sections regarding alignment, calibration, and amplitude modulation effects. The LCPDI is then demonstrated using two phase objects: a defocus difference wavefront, and a temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to theoretical or independently measured results and show excellent agreement. A computer simulation of the LCPDI was performed to verify the source of observed periodic phase measurement error. The error stems from intensity variations caused by dye molecules rotating within the liquid crystal layer. Methods are discussed for reducing this error. Algorithms are presented which reduce this error; they are also useful for any phase-stepping interferometer that has unwanted intensity fluctuations, such as those caused by unregulated lasers. It is expected that this instrument will have application in the fluid sciences as a diagnostic tool, particularly in space based applications where autonomy, robustness, and compactness are desirable qualities. It should also be useful for the testing of optical elements, provided a master is available for comparison. FIGURE 9.7, Interferogram with thermocouple probe inserted into chamber 93 FIGURE 9.8, Plot of temperature across chamber, measured with LCPDI and traversing thermocouple 94 3. ABSTRACT A new instrument, the liquid crystal point diffraction interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffraction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction. This dissertation describes the theory of both the PDI and liquid crystal phase control. The design considerations for the LCPDI are presented, including manufacturing considerations. The operation and performance of the LCPDI are discussed, including sections regarding alignment, calibration, and amplitude modulation effects. The LCPDI is then demonstrated using two phase objects: a defocus difference wavefront, and a temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to theoretical or independently measured results and show excellent agreement. A computer simulation of the LCPDI was performed to verify the source of observed periodic phase measurement error. The error stems from intensity variations caused by dye molecules rotating within the liquid crystal layer. Methods are discussed for reducing this error. Algorithms are presented which reduce this error; they are also useful for any phase-stepping interferometer that has unwanted intensity fluctuations, such as those caused by unregulated lasers. 10 It is expected that this instrument will have application in the fluid sciences as a diagnostic tool, particularly in space based applications where autonomy, robustness, and compactness are desirable qualities. It should also be useful for the testing of optical elements, provided a master is available for comparison.
doi:10.1364/ol.19.000916 pmid:19844487 fatcat:6itcvawwpzbflnqw7el542o2om