A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
HARDNESS RESULTS FOR COMPUTING OPTIMAL LOCALLY GABRIEL GRAPHS
2014
International journal of computational geometry and applications
Delaunay and Gabriel graphs are widely studied geometric proximity structures. Motivated by applications in wireless routing, relaxed versions of these graphs known as Locally Delaunay Graphs (LDGs) and Locally Gabriel Graphs (LGGs) have been proposed. We propose another generalization of LGGs called Generalized Locally Gabriel Graphs (GLGGs) in the context when certain edges are forbidden in the graph. Unlike a Gabriel Graph, there is no unique LGG or GLGG for a given point set because no edge
doi:10.1142/s0218195914500071
fatcat:ak7lfrjgizb6vnhp7hs2xjevei