HISTORICAL ANALYSIS OF MESSAGE CONTENTS TO RECOMMEND ISSUES TO OPEN SOURCE SOFTWARE CONTRIBUTORS

Igor Fabio Steinmacher, Igor S Wiese, Andre Luis Schwerz, Rafael Liberato Roberto, João Eduardo Ferreira, Marco Aurélio Gerosa
2014 Revista Eletrônica de Sistemas de Informação  
Os desenvolvedores de projetos de software livre distribuídos utilizam ferramentas de acompanhamento de pendências para coordenar o seu trabalho. Essas ferramentas armazenam informações importantes, mantendo registro de decisões importantes e soluções para bugs. Decidir sobre que pendências são as mais adequadas para se contribuir pode ser difícil, uma vez que a elevada quantidade de dados aumenta a pressão sobre os desenvolvedores. Este artigo mostra a importância do conteúdo das discussões
more » ... o das discussões que ocorrem por meio da ferramenta de acompanhamento de pendências em um projeto de software livre para a construção de um classificador para predizer a participação de um colaborador na solução de um problema. Para projetar este modelo de predição, utilizamos dois algoritmos de aprendizagem de máquina: Naïve Bayes e J48. Utilizamos dados do projeto Apache Hadoop Commons para avaliar o uso dos algoritmos. Aplicando algoritmos de aprendizado de máquina aos dez desenvolvedores mais ativos no projeto, obtivemos uma média de recall de 66,82% para Naïve Bayes e 53,02% usando J48. Obtivemos 64,31% de precisão e 90,27% de acurácia usando o J48. Também realizamos um estudo exploratório com cinco desenvolvedores que participaram na solução de um volume menor de problemas , obtendo 77,41% de precisão, 48% de recall, e 98,84% de acurácia usando o algoritmo J48. Os resultados indicam que o conteúdo dos comentários em pendências/ problemas em projetos de software livre representam um fator relevante com base no qual recomendar pendências aos desenvolvedores que colaboram com o projeto.
doi:10.21529/resi.2014.1302005 fatcat:m6a3hyexjnhytjzvltw3nx6kmi