A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Multi-scale object detection by bottom-up feature pyramid network
2019
The Journal of Engineering
The deep neural networks has been developed fast and shown great successes in many significant fields, such as smart surveillance, self-driving and face recognition. The detection of the object with multi-scale and multi-aspect-ratio is still the key problem. In this study, the authors propose a bottom-up feature pyramid network, coordinating with multi-scale feature representation and multi-aspect-ratio anchor generation. Firstly, the multi-scale feature representation is formed by a set of
doi:10.1049/joe.2019.0314
fatcat:obryvscrpbcrvaqu54cao2qdxy