BLACK HOLE GEOMETRIES IN NONCOMMUTATIVE STRING THEORY

SUPRIYA KAR, SUMIT MAJUMDAR
2006 International Journal of Modern Physics A  
We obtain a generalized Schwarzschild (GS-) and a generalized Reissner-Nordstrom (GRN-) black hole geometries in (3+1)-dimensions, in a noncommutative string theory. In particular, we consider an effective theory of gravity on a curved $D_3$-brane in presence of an electromagnetic (EM-) field. Two different length scales, inherent in its noncommutative counter-part, are exploited to obtain a theory of effective gravity coupled to an U(1) noncommutative gauge theory to all orders in $\Theta$. It
more » ... ers in $\Theta$. It is shown that the GRN-black hole geometry, in the Planckian regime, reduces to the GS-black hole. However in the classical regime it may be seen to govern both Reissner-Nordstrom and Schwarzschild geometries independently. The emerging notion of 2D black holes evident in the frame-work are analyzed. It is argued that the $D$-string in the theory may be described by the near horizon 2D black hole geometry, in the gravity decoupling limit. Finally, our analysis explains the nature of the effective force derived from the nonlinear EM-field and accounts for the Hawking radiation phenomenon in the formalism.
doi:10.1142/s0217751x06033179 fatcat:s7oe6swzzvf5bbsvv6shhg7oaa