Software Defined Radio – A High Performance Embedded Challenge [chapter]

Hyunseok Lee, Yuan Lin, Yoav Harel, Mark Woh, Scott Mahlke, Trevor Mudge, Krisztian Flautner
2005 Lecture Notes in Computer Science  
Wireless communication is one of the most computationally demanding workloads. It is performed by mobile terminals ("cell phones") and must be accomplished by a small battery powered system. An important goal of the wireless industry is to develop hardware platforms that can support multiple protocols implemented in software (software defined radio) to support seamless end-user service over a variety of wireless networks. An equally important goal is to provide higher and higher data rates.
more » ... paper focuses on a study of the wideband code division multiple access protocol, which is one of the dominant third generation wireless standards. We have chosen it as a representative protocol. We provide a detailed analysis of computation and processing requirements of the core algorithms along with the interactions between the components. The goal of this paper is to describe the computational characteristics of this protocol to the computer architecture community, and to provide a high-level analysis of the architectural implications to illustrate one of the protocols that would need to be accommodated in a programmable platform for software defined radio. The computation demands and power limitations of approximately 60 Gops and 100∼300 mW, place extremely challenging goals on such a system. Several of the key features of wideband code division multiple access protocol that can be exploited in the architecture include high degrees of vector and task parallelism, small memory footprints for both data and instructions, limited need for complex arithmetic functions such as multiplication, and a highly variable processing load that provides the opportunity to dynamically scale voltage and frequency.
doi:10.1007/11587514_3 fatcat:y3zzuozqezdnjgb4lnfzz6l2za