Metagenomic Approaches Unearth Methanotroph Phylogenetic and Metabolic Diversity

Garrett J. Smith, Kelly C. Wrighton
2019 Current Issues in Molecular Biology  
Methanotrophic microorganisms utilize methane as an electron donor and a carbon source. To date, the capacity to oxidize methane is restricted to microorganisms from three bacterial and one archaeal phyla. Most of our knowledge of methanotrophic metabolism has been obtained using highly enriched or pure cultures grown in the laboratory. However, many methanotrophs currently evade cultivation, thus metagenomics provides a complementary approach for gaining insight into currently unisolated
more » ... ly unisolated microorganisms. Here we synthesize the studies using metagenomics to glean information about methanotrophs. We complement this summary with an analysis of methanotroph marker genes from 235 publically available metagenomic datasets. We analyze the phylogenetic and environmental distribution of methanotrophs sampled by metagenomics. We also highlight metabolic insights that methanotroph genomes assembled from metagenomes are illuminating. In summary, metagenomics has increased methanotrophic foliage within the tree of life, as well as provided new insights into methanotroph metabolism, which collectively can guide new cultivation efforts. Lastly, given the importance of methanotrophs for biotechnological applications and their capacity to filter greenhouse gases from a variety of ecosystems, metagenomics will continue to be an important component in the arsenal of tools needed for understanding methanotroph diversity and metabolism in both engineered and natural systems.
doi:10.21775/cimb.033.057 pmid:31166185 fatcat:6fl7xhcztnbqjgtcfmkdcxriqq