Multivariate Weighted Isotonic Regressive Modest Adaptive Boosting Based Resource-Aware Routing In WSN [post]

N. Muruganandam, V. Venkatraman, R. Venkatesan
2021 unpublished
WSN includes a scenario where huge amount of sensor nodes are distributed to monitor environmental conditions with route collected data towards sinks via the internet. WSNs efficiently manage the wider network with available resources, such as residual energy and wireless channel bandwidth. Therefore, routing algorithm is important to enhance battery-constrained networks. Many existing techniques are developed for balancing consumption of energy but efficient routing was not achieved.
more » ... te Weighted Isotonic Regressive Modest Adaptive Boosting based Resource Aware Routing (MWIRMAB-RAR) technique is introduced for enhancing routing. The MWIRMAB-RAR technique includes a different process namely resource-aware node selection, route path discovery, and data transmission. Initially, the MWIRMAB-RAR technique uses the Modest Adaptive Boosting technique uses the Multivariate Weighted Isotonic Regression function for detecting resource-efficient sensor nodes for effective data transmission. After that, multiple route paths are established based on the time of flight method. After establishes route path, source node sends data packets to sink node via resource-efficient nodes. The data delivery was enhanced and minimizes packet loss as well as delay. The simulation analysis is carried out on certain performance factors such as energy consumption, packet delivery ratio, packet loss rate, and delay with number of data packets and sensor nodes. The obtained evaluation indicates MWIRMAB-RAR outperforms well in terms of increasing data packet delivery and reduces consumption of energy, packet loss rate, and delay.
doi:10.21203/ fatcat:iyw6aeg5xzdb5e3jhuiujivtha