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CD4 Ligand IL-16 Inhibits the Mixed Lymphocyte  Reaction' 

Arthur C. Theodore,2 David M. Center,  John Nicoll, Gregg Fine, Hardy Kornfeld,  and 
William  W. Cruikshank 

CD4  participation in TCR/CD3-associated activation through interaction with the MHC class II Ags results in formation of a 
CD4-TCR/CD3 complex capable of maximal signal transduction. When CD4 binds to alternative ligands such as HIV-1  gpl20 
or anti-CD4 Abs, Ag stimulation of TCR/CD3 is markedly inhibited, and an  unresponsive  state  develops. To determine if the 
natural CD4 ligand  interleukin-1 6 also induces unresponsiveness, we tested the effects of  rl l-16 on T cell proliferation in mixed 
lymphocyte reactions. rl l-16 suppressed T cell  proliferation  in a dose-dependent manner at concentrations of 10"' to 10" M. 
Inhibition  of  proliferation was present on days 5 to 9 of the  mixed  lymphocyte reaction. rlL-16 did not modulate membrane 
CD4, significantly change  basal r3H]thymidine  incorporation in resting T lymphocytes, or alter viability. The  suppressive  effect 
was specifically blocked by preincubation with neutralizing anti-rll-16 mAb or  with recombinant soluble CD4. While the 
expression of 11-2R on responder cells was unaffected by  rll-16, the addition of exogenous r l l -2  did not restore T cell respon- 
siveness.  The  unresponsiveness induced by r l l -16 is  distinct from that of other CD4 ligands in that  CD4 and 11-2R expression 
are unaffected.  The failure of  rlL-2  to restore proliferation suggests that  the decrease in T cell responsiveness induced by rlL-16 
may result from an interruption  in the 11-2R-signaling  mechanism.  These results  may help explain how CD4 delivers both 
activating and inhibitory signals and provides a rationale for the role  of 11-16 in the regulation of immune responses. The 
Journal of Immunology, 1996,  157: 1958-1 964. 

T he discovery of CD4 as  a receptor of the HIV-1 virus has 
led to increased scrutiny of the mechanisms of T cell un- 
responsiveness. Normally, maximal T cell activation and 

proliferation requires signaling through the TCR following the 
proper presentation of Ag to MHC class I1 Ags by APC (1-3). This 
process involves the formation of a  CD4-TCWCD3 complex, in- 
creased expression of IL-ZR, and production of IL-2. Improper 
presentation by altered APC  (4-6), inadequate costimulation (7- 
9), chronic exposure to excess Ag (IO), or exposure to anti-CD3 
mAbs (1 1-13) can result in T cell anergy. Anergic conditions share 
the feature of defective IL-2-related proliferation, which can be 
categorized into those in which proliferation recovers with exog- 
enous IL-2 and those in which it does not. In the former group, 
exemplified by models of neonatal xenograft transplantation, an- 
ergy is difficult to induce (14, IS), while the latter  group  is char- 
acterized by a more stable and easily induced anergy such as that 
which occurs when allografting is performed across major and 
minor histocompatibility Ags (16-18). 

Certain ligands that bind CD4 independent of CD3/TCR, such 
as HIV-1 envelope glycoprotein (gp120) and anti-CD4 Abs, can 
also induce anergy (19-24). Of interest, each of these ligands di- 
rectly induces some early responses in resting T cells characteristic 
of activation, including chemotaxis (2.5, 26), activation of p56lCk 
(27) and nuclear factor-rtB (28), and a rise in intracellular inositol 
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trisphosphate (IF',), and [Ca2+Ii although not all the functions or 
signals are common to all of the ligands. Mechanistically it has 
been demonstrated that anti-CD4  Abs  as well as HIV-1 gp120 
could down-modulate CD4 (17, 18, 29-35) and thereby inhibit 
both class I1 MHC-CD4 interactions (17, 29, 36, 37) and CD4- 
TCWCD3 clustering (38). Moreover, these Abs appear to prime 
for apoptosis to a  CD3 signal (39-42). In vivo, some of these Abs 
induce tolerance by opsonization-dependent clonal depletion of 
CD4+ lymphocytes by reticuloendothelial cells. However, HIV 
gp 120 and nondepleting anti-CD4 Abs  exert their in vivo effects by 
the  functional inactivation of T cells. Anti-CD4 Abs that produce 
clonal anergy rather than clonal deletion appear  to be more 
effective  in  producing  graft  tolerance in animal models of trans- 
plantation and  immunosuppression in  patients with rheumatoid 
arthritis  (36, 37,  43-45). 

Our laboratory has described and cloned the natural human CD4 
ligand, IL-16. IL-16 is secreted from CD8+ lymphocytes follow- 
ing stimulation with either mitogen, histamine, or specific Ag. Ini- 
tially described as a chemoattractant factor capable of inducing a 
migratory response in human CD4+ lymphocytes (2.5, 46-48), 
monocytes (25),  and eosinophils (49), IL-16 stimulation of resting 
CD4+ lymphocytes also results in  a transient increase in [Ca2+], 
and generation of IP, followed by an increase in cell surface ex- 
pression of IL-2R (2.5). The activity of IL-16 is absolutely depen- 
dent upon the presence of membrane-expressed functional CD4 
based on studies demonstrating that only CD4+ cells are respon- 
sive to IL-16 stimulation (25, 48-51); that IL-16-induced signals 
are all inhibited by anti-CD4 Fab fragments (25, 46-51); that 
IL-16 can be immunoprecipitated by recombinant soluble CD4 
(rsCD4) (51): that the association of CD4 with ~ 5 6 ' " ~  is essential 
for the IL-16-induced motile response (27),  and finally that CD4 
cDNA infection, with subsequent membrane expression of human 

Abbreviations used in this paper: IP,, inositol trisphosphate;  rsCD4, recombi- 
nant soluble CD4; P-gal, /%galactosidase; ICa2+l,, intracellular free Ca2+ 
concentration. 
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CD4 into L3T4-negative, IL-16-unresponsive, murine hybridoma 
cells imparts cellular responsiveness as evidenced by rises in 
[Ca2’], and IP, (50). 

Since IL-16 shares agonistic effects on CD4+ lymphocytes with 
anti-CD4 Abs and HIV-1 gp120, we investigated whether rIL-16 
was also capable of inducing unresponsiveness to stimulation with 
allogeneic cells in mixed lymphocyte reactions. Unlike HIV-1 
gp120, rIL-16 suppresses cell proliferation without modulating 
CD4 from  the  cell surface. The immunosuppressive effects are 
maximal when rIL-16 is added to the cells up to 24 h prior to cell 
activation and can still be observed when added after responder 
and stimulator cells are mixed. Although the induction of high 
affinity IL-2R on  cells stimulated with allogeneic Ag is not affected 
by rIL-16, the inhibitory effect on the mixed lymphocyte reaction 
induced by rIL-16 is not rescued by the addition of 
exogenous  IL-2. 

Materials and Methods 
rlL-76 and anti-rlL-16 

rIL-16 and anti-rIL-16 Ab were generated as previously described (51). 
Briefly, a cDNA fragment containing the  IL-16 open reading frame was 
generated by PCR and ligated into the Escherichia  coli expression vector 
PET-16b.  The IL-16-polyhistidine fusion protein was purified by metal- 
chelation chromatography and passed over  a polymyxin B  column to re- 
move  endotoxin (52). A control recombinant protein was generated in the 
same manner employing cDNA  encoding  for p-galactosidase (rp-gal)  and 
purified identically. Recombinant P-gal and rIL-I6  were assayed for the 
presence of endotoxin using a BioWhittaker QCL 1000 LAL testing kit and 
stored in 7.5% glycerol with 0.0001 M HCI  at -80°C. Quantification of 
protein was performed using a Bradford assay. All rIL-16 and @gal con- 
tained less than 1.0 Endotoxin Uslml of endotoxin  and were used in ex- 
periments within 4 wk. Anti-rIL-16 Ab was generated by B cell hybrid- 
omas after immunization with  rIL-I6 using standard techniques (AGMED, 
Bedford, MA). Positive clones were identified by their ability to inhibit 
rlL-16-induced lymphocyte migration. Ab was purified by  affinity chro- 
matography using a rIL-16-protein A-Sepharose affinity column (Pharma- 
cia Biotech., Uppsala, Sweden). After washing, the column was eluted with 
50 mM citric acid, pH 2.5, and the pH was neutralized with the addition of 
1/10 volume of 1 M  Tris, pH 8.8. Total protein was quantitated by OD. 

Cells and cultures 

Human PBMCs were obtained from the venous blood of healthy normal 
human volunteers by density centrifugation on Ficoll-Paque (Pharmacia 
Fine  Chemicals, Piscataway, NJ) as previously described (30). T  lympho- 
cytes were selected by washing the  PBMCs  three times with medium 199 
(M.A. Bioproducts, Walkersville, MD) supplemented with 25 mM HEPES 
buffer, 100 U/ml penicillin, and 100  pg/ml streptomycin and incubating on 
a nylon wool column for 45 min at  37°C in 5%  C02 (53). The nylon wool 
nonadherent T lymphocytes eluted were >97%  T lymphocytes as deter- 
mined by fluorescent Ab staining with anti-CD3  mAb (Becton Dickinson, 
Mountain View, CA).  Mixed lymphocyte reactions were performed using 
PBMCs  (54).  Stimulator  cells were prepared by incubating cells at 106/ml 
with 25 pg/ml mitomycin C  for 20 to 30 min. The cells were then washed 
four times with RPMI 1640 supplemented with 25 mM HEPES buffer, 100 
U/ml penicillin, and 100 pg/ml streptomycin (RPMI 1640-HPS) and re- 
suspended in RPMI 1640-HPS supplemented with 10% fetal bovine serum 
(complete  medium)  at lo6 cells/ml. Responder PBMCs were prepared from 
an unrelated donor, suspended in complete medium at IO6 cellslml, and 
preincubated with 10”’ to 10”’ M rIL-16, identical dilutions of a  rp-gal 
or medium alone (control)  at  37°C in 5% CO, for  1  h before the addition 
of stimulator cells. In some  experiments, IO to 100 pg/ml of anti-IL-16 Ab 
or  5  to 50 pg/ml  rsCD4 (American Biotechnologies, Cambridge, MA) 
were incubated with rIL-16 or $-gal for 1 h at  4°C prior to  the preincu- 
bation period. In other experiments, 10 to 1 0 0  U/ml of rIL-2 were added to 
experimental and control samples after 24-h incubation. Responder and 
stimulator cells were mixed in a I : 1 ratio and aliquoted into quadruplicate 
wells of 96-well round-bottom plates. Unless  otherwise  stated, the cells 
were pulsed with [?H]thymidine on  day  5, harvested with a Titretek cell 
harvester, and  counted in a Becton Dickinson scintillation counter on 
day 6. 

Table I .  Effects of rlL-76 on proliferation in resting T lymphocytes 

Expt. 1” Expt. 2 Expt. 3 

Medium 4836 -t 1212b 3099 2 636 8852 5 1108 
rp-gal‘ 5604 2 1598 3697 5 285 8315 -t 1084 
rlL-1 bd 5282 t 1420 2902 2 778 7980 i 1198 

Pretreated T lymphocytes  were  cultured for 5 days,  pulsed  with 13Hlthymi- 

Mean ? SD cpm from  four quadruplicate wells for each sample. 

10” M. 

dine for 18 h, and  harvested. 

‘ Equal concentration to rlL-16 based  on  protein  quantity. 

Detection of surface Ags and receptors 

CD4 expression was analyzed using fluorescein-conjugated OKT4, and 
phycoerythrin-conjugated OKT4A mAbs  (Ortho Diagnostics). For detec- 
tion of IL-2R.  cells were stained with fluorescein-conjugated anti-CMS Ab 
(Becton Dickinson) and phycoerythrin-labeled OKT4 Ab. Cells  from ap- 
propriate cultures were washed, resuspended in PBS,  pH 7.4, with 1% 
azide and incubated with 0.25 p g  labeled Ab for 30 min at 4°C.  Cells were 
then washed three times in cold PBS, pH 7.4, resuspended at I X lo6 
cells/ml, fixed with 10% formalin, and stored in the dark at 4°C until 
analysis with a Becton Dickinson FACScan as previously described (30). 

Results 
rlL-16 does not stimulate DNA synthesis in resting PBMCs 

To determine  the effects of rIL-16 on unstimulated cells,  PBMCs 
were cultured either with rIL-16 (lo” M), a similar dilution of 
rp-gal (used as a negative control  for the E. coli expression and 
purification steps), or complete medium alone (control) for 5 days, 
then pulsed with [3H]thymidine for 18 h and harvested. No sig- 
nificant difference in [3H]thymidine uptake was seen between me- 
dium  alone,  @-gal, or rIL-16 (Table I). From days 3 to 7, aliquots 
of cells  from each group were assessed for viability as determined 
by trypan blue exclusion. Over  the observation period, cell viabil- 
ity gradually decreased in all groups, but there was no significant 
difference between the groups (range 78 to 86%). 

rlL- 7 6 inhibits the mixed  lymphocyte reaction 

We next examined the effect of rIL-16 on the mixed lymphocyte 
reaction. rIL-16 was used in a concentration dose range (10”’ to 

M) which was reported previously to induce lymphocyte 
migration (51). As shown in Figure 1, rIL-16 added 1 h before the 
cells were mixed inhibited lymphocyte proliferation in a concen- 
tration-dependent fashion compared with control medium (defined 
as 100%). No significant effect was observed with concentrations 
below 10”‘ M. 

To determine the specificity of the inhibitory effect, neutralizing 
anti-rIL-16 mAb (5  X M, sufficient to neutralize IO-’ M 
rIL-16 chemotactic bioactivity) was preincubated with 10”’ to 
lo-’ M rIL-16 prior to the addition of responder cells.  This  con- 
centration of anti-rIL-16 Ab completely inhibited the effects of 
rIL-16 ( p  < 0.01). As expected from the stoichiometry, a 10-fold 
higher concentration of anti-dl-16 Ab was required to inhibit the 
effects of 10” M rIL-I6 (53 t_ 3% vs 84 t 8%, p = 0.0045). 
Similar concentrations of isotype  control Abs specific for human 
CD8 Ag did not affect rIL-16-induced inhibition (data not shown). 
In addition, we preincubated rIL-16 with rsCD4 ( 5  to 50 ,ug/ml). 
The inhibition of lymphocyte proliferation observed with IO” M 
rIL-16 was blocked (114 ? 11%, p = 0.0002) with a 10-fold 
excess of rsCD4 (50 pglml; M). A total of 5 pg/ml( M) 
of rsCD4 was required to block the inhibition induced by all lower 
concentrations of rIL-16 ( p  < 0.01). 

Kinetics of rlL-76 inhibition of mixed  lymphocyte reaction 

Since we harvested cells after 6 days’ incubation, it was possible 
that the effect exerted by rIL-16 represented a delay in responder 
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FIGURE 1. Inhibition of  the mixed lymphocyte reaction by rlL-16 
and  reversal of effects by anti-rlL-16 Ab and rsCD4.  Responder cells 
were incubated with 10”’ to lo” M rlL-16 for 1 h before  the addi- 
tion of stimulator cells. Mixed lymphocyte reactions  (MLR) were in- 
cubated for a total of 6 days with an 18-h L3H]thymidine pulse.  The 
data,  expressed as a percent of proliferation compared with medium 
control (defined as 100%) was determined by the formula: 

YO Proliferation = 
cprn  of  experimental MLR - cpm  of responder 

cpm  of  control MLR - cpm of responder 
x 100. 

Parallel dilutions of @-gal did not produce  significant  variations  from  me- 
dium control (26%). Blocking studies  were  performed by preincubating 
rlL-16 with 100 pg of anti-rlL-1 6 and 50 pg rsCD4  for  the 10” M con- 
centration,  and 10 pg of  anti-rlL-16  and 5 pg rsCD4  for all other con- 
centrations prior to incubation with responder  cells.  The  concentration- 
dependent inhibition of  the  mixed  lymphocyte  reaction  produced  by all 
concentrations  of  rlL-16 (p < 0.001) except 10”’ M (90 2 7%, p = 0.2) 
was significantly  reversed  by anti-rlL-16 Ab (p < 0.01)  and  rsCD4 (p < 
0.01). The  means ? SE from six experiments  are  shown.  Statistical  signif- 
icance was determined by a paired  Student f test. 

cell proliferation such that the suppression of proliferation ob- 
served at day 6 would be absent later on. Conversely, rIL-16 could 
have augmented the proliferative response so that the suppression 
of proliferation represented “bum out” of the responder cells. To 
determine whether the effect of rIL-16 was delaying or accelerat- 
ing the normal lymphocyte response, we performed mixed lym- 
phocyte reactions in the presence of rIL-16, rp-gal,  or medium 
alone and harvested them serially from 3 to 9 days. There was no 
significant difference in cell proliferation observed between rp-gal 
or medium (data not shown). However, rIL-16 treatment resulted 
in diminished [3H]thymidine incorporation on days 5 to 9 (Fig. 2). 

Time dependence of rlL-16 inhibition of mixed fymphocyte 
reaction 

The CD4 ligands HIV-1 gp120  and anti-CD4 Abs induce revers- 
ible effects on CD4-mediated functions, which recover if the stim- 
ulus is removed. To determine if the effect caused by rIL-16 is 
reversible, lop7 to lop9 M rIL-16 was cultured with responder 
PBMCs  for 24 h (-24 h) and 1 h (- 1 h) before the addition of 
stimulator cells, and 1 h (+ 1 h) and 24 h (+24 h) after responder 
and stimulator cells were mixed. Figure 3 shows that the inhibition 
of proliferation seen at - 1 h and + 1 h are not significantly dif- 

30000 

20000 

E u 

10000 

0 rbpal (control) 
a rlL-16 
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0 

3 4  5 6 7  0 9  
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FIGURE 2. Kinetics of rlL-16 inhibition. Responder cells were incu- 
bated with 10” M rlL-16 or r@-gal (control) 1 h before the addition of 
stimulator cells. Aliquots of cells were pulsed with I3H1thymidine on 
days 2 through 8 and  harvested  on the following day  (days 3 through 
9, respectively). The ordinate represents cpm (mean -t SD) from qua- 
druplicate wells. Statistical significance between control and rlL-16- 
treated  samples  was determined by a paired Student t test. (* = p < 
0.01, ** = p < 0.05). One representative experiment of three is shown. 

ferent for any concentration of rIL-16 added. At -24 h, there was 
no significant effect on proliferation with M (108 ? 5%); 
there was minimal, but significant, inhibition with lo-’ M rIL-16 
(85 2 3%, p < 0.01); and M rIL-16 inhibited proliferation to 
an amount comparable with that observed when added at -1 h. 
After initiation of the mixed lymphocyte reaction (+24), rIL-16 
did not significantly inhibit proliferation at any concentration, al- 
though the reduction seen with lop7 M rIL-16 approached signif- 
icance (78 ? 11%, p = 0.12). 

Exogenous IL-2 does not reverse rlL-16 inhibition of the MLR 

We next examined whether we could restore proliferation with 
exogenous rIL-2. In Figure  4, we compare the proliferation of 

to 10” M rIL-16 with and without the addition of rIL-2. No 
significant recovery of proliferation was observed using 10 U/ml 
rIL-2. Higher concentrations of rIL-2 further reduced proliferation 
(data not shown). The  absence of IL-2 recovery was not due to a 
decrease in the expression of high affinity IL-2 R, since preincu- 
bation with rIL-16 did not change the cell surface expression on 
responder cells  (Table 11). 

rlL- 16  does not modulate CD4 expression 

Incubation of  CD4’ lymphocytes with HIV-1 gp120 or certain 
immunosuppressive anti-CD4 Abs results in a rapid loss of mem- 
brane-expressed CD4  (22,23,30-35). It is theorized that this mod- 
ulation of CD4 contributes to the observed immunosuppressive 
effect and priming for apoptosis observed with intact HIV- 1. We 
investigated whether rIL-16 stimulation had a similar effect on 
membrane-expressed CD4.  Since OKT4 Fab  fragments block the 
effects of both natural and rIL-16, suggesting close proximity of 
the OKT4 and rIL-16 binding sites, we evaluated the effect of 
IL-16 stimulation on CD4 expression using an Ab that binds to a 
different domain on CD4,OKT4A. The relative amount of  OKT4A 
labeling indicates the relative amount of membrane-expressed 
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FIGURE 3. Temporal relationship of rlL-16 administration to sup- 
pression  of  the mixed lymphocyte reaction. Responder cells were in- 
cubated with  to 10” M rlL-16 for 24 h  (-24 h)  or 1  h (-1 h) 
before the addition of stimulator cells and 1  h  (+1 h) or 24 h  (+24 h) 
after  responder and stimulator cells were mixed. Cultures were incu- 
bated  for a total of 6 days from the time stimulator cells were  added 
with an 18-h I3H]thymidine pulse.  The  data,  expressed as a percent of 
proliferation compared with  control medium (defined as loo%), was 
determined as in Figure 1 .  A concentration of 10” M Significantly 
inhibited proliferation at -24, -1, and f l  h ( p  < 0.001) but not at 
+24 h. Significant inhibition was  also  seen  at -24 h with l o - *  M 
rlL-16 ( p  < 0.01) but not with lo-’ M. No concentration of rlL-16 
significantly inhibited proliferation at +24 h.  The  means 2 SE from 
three  experiments  are  shown.  Statistical significance was determined 
by a paired Students t test. 

CD4, while the relative amount of decrease in OKT4 labeling in- 
dicates  the presence of rIL-16 bound to CD4.  Figure 5 shows the 
effect of 1 OK7 M rIL- 16 on the expression of membrane-expressed 
CD4. The relative amount of OKT4A labeling during the 5 days 
remained constant indicating that rIL-16 had no effect on surface 
expression of CD4. The  decrease in OKT4 labeling at  2 to 6 h 
following addition of rIL-16  suggests  some binding competition 
with OKT4  Ab consistent with our previous reports that OKT4 Fab 
fragments inhibit IL-16-induced chemotaxis and IL-2R expression 
(25, 48).  The decrease in OKT4 binding diminishes by 24 h. 

Discussion 
The regulation of CD4+ lymphocyte responsiveness to Ag is 
markedly altered by accessory molecular interactions involving 
CD4 and its association with the TClUCD3 complex. A dual role 
for CD4 has been well established. When T cells are stimulated by 
Ag presented by MHC class I1 molecules, cell activation and pro- 
liferation are amplified. However, when CD4 is bound indepen- 
dent of Ag by alternate ligands (e.g.. HIV-1 gp120 or certain anti- 
CD4 Abs)  subsequent TCWCD3-mediated proliferation is 
suppressed. In this study we demonstrate reversible inhibition of 
allogenic-induced proliferation using a recombinant form of IL-16, 
a naturally occumng  CD4 ligand with activating properties unre- 
lated to MHC  class I1 Ags. The decrease in Ag responsiveness 
occurs without loss of cell surface CD4 and is not a result of 

1 T o -IL-2 

Control 

FIGURE 4. It-2 does not indc JCl 

10” 10 -0  

[rlL-161 M 
e recoverv from rlL-16 inhibition. Re- 

sponder cells were incubated with  lO-”to 10” M rlL-16 for 1 h 
before the addition of stimulator cells.  After 24 h, 10 U/ml of rlL-2 
were  added  and  the reaction was allowed to proceed  for  another 5 
days with an 18-h f3H]thymidine pulse.  The  data,  expressed as a per- 
cent of proliferation compared with control medium (defined as 
loo%), were determined as in Figure 1. rlL-2 increased  the prolifera- 
tive response of control cells ( p  < 0.01) but failed to reverse  the inhi- 
bition  in cells treated with rlL-16. The  means +- SE from four experi- 
ments  are shown. Statistical significance was determined by a paired 
Student f test. 

altered kinetics of response. There is no effect on IL-2R expression 
or reversal by the addition of exogenous IL-2. 

The expression of high-affinity IL-2R unresponsive to exoge- 
nous IL-2 in allogenic stimulated cells pretreated with rIL-16 in 
these  studies  suggests  the IL-2R signaling pathway may be sup- 
pressed. Although the absence of rIL-2 recovery with normal 
IL-2R has been reported when the mixed lymphocyte reaction is 
blocked by splenocytes following total lymphoid irradiation (551, 
this is not the case when anti-TClUCD3 polyclonal Ab-induced 
proliferation is inhibited by HIV-1 gp120 (19, 56, 57). This dis- 
parity may relate to the down-modulation of CD4 from the cell 
surface by HIV-1  gp120 (30-33) or may result from differences in 
binding sites on CD4. The latter hypothesis may explain the dif- 
ferences in T cell responses following binding of anti-CD4 Abs 
directed at different epitopes of CD4 (58). HIV-1 gp120 interacts 
at the Dl and D2 loci and may competitively inhibit MHC class I1 
Ags (59, 60) while rIL-16 appears to interact with CD4 near the 
epitope that binds OKT4 Ab. 

Since  the full spectrum of rIL-16-induced, CD4-dependent re- 
sponsiveness requires tetramerization (5 1, 61, 62), we suspect that 
some of the differences between the rIL-16 suppression of the 
mixed lymphocyte reaction and that observed following anti-CD4 
Abs and HIV-1 gp120 may also be related to its ability to cross- 
link CD4 into tetrameric aggregates. Some anti-CD4 Abs, when 
cross-linked, prime cells for apoptosis when the TCWCD3 com- 
plex is stimulated (39, 40, 63),  a phenomenon that has also been 
reported with HIV-1 gp120 under some conditions (39, 64-68) 
but not in others (19, 41). We have no evidence that IL-16 primes 
cells for apoptosis. In fact, this appears unlikely considering the 
normal expression of IL-2R on stimulated CD4+ cells and the 
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Table II. Effects of rlL-76 on IL-2R expression in resting and 
stimulated T cells 

Resting' Stimulatedb Stimulated + rlL-l6< % Proliferation 

Experiment 1 
CD4+ 10.1' 32.7 (94)' 30.3 (96)  68s 
CD4- 1.9 5.5 4.3 

Experiment 2 
CD4+ 5.4 27.4  (129) 29.7 (128) 62 
CD4- 0.9 7.4 4.5 

Experiment 3 
CD4' 6.1  33.6  (114) 30.3 (116) 70 
CD4- 1.9 4.3 4.9 

CD4 and  IL-2R. 

conditions. 

Responder  PBMC  were cultured alone for 5 days,  harvested and stained  for 

Responder and stimulator PBMC, cultured and  stained under identical 

c 10-9 M. 
Gates  were  set around the lymphocyte population of the control MLR  based 

on forward and  side  scatter  characteristics from FACScan  analysis. Identical gat- 

Gating eliminated >99% of stimulator cells from analysis. 
ing was  used to compare resting T cells and  MLR  cultures containing rlL-16. 

e Percent of the total gated population staining positively for  IL-2R.  The  av- 
erage of the  percentage of IL-2R  expression  for stimulated cells cultured alone 
(31.2 2 2.71, or with rlL-16 (30.1 f 0.3) is not statistically different (p  = 0.59). 

'Mean fluorescence intensity of IL-2R+ cells. 
8 Expressed as percentage of proliferation of rlL-16 cells compared with con- 

trol cells in a parallel MLR where: 

Yo Proliferation = 
cpm of experimental MLR-cpm of responder 

cprn  of  control MLR - cpm of responder x 100 

decreased expression of CD95 noted in response to IL-16.4 Rather, 
we suspect the aggregation of CD4 into tetramers by IL-16 un- 
couples CD4 from the TCR and makes tetramerization with MHC 
I1 molecules impossible, resulting in the loss of mixed lymphocyte 
reaction-dependent proliferative activity (69-72). Our experi- 
ments do not eliminate the potential immunosuppressive effect of 
rIL-16-induced cytokines on the MLR, nor did we address the 
effects of rIL-16 on IL-2 synthesis during the mixed lymphocyte 
reaction. As regards the latter, prior studies have shown that IL-16 
does not directly affect IL-2 synthesis (50), and the lack of recov- 
ery following addition of exogenous IL-2 makes this an unlikely 
complete explanation for  our  data. 

We found that cells pretreated 24 h before initiation of the 
mixed lymphocyte reaction could still be inhibited from prolifer- 
ating, but that the dose-response curves had shifted; lesser con- 
centrations of rIL-16, which suppressed proliferation at - 1 h, did 
not do so at -24 h. Interestingly, adding rIL-16 1 h  after the mixed 
lymphocyte reaction was initiated suppressed in a fashion that was 
indistinguishable from instances when cells were pretreated for 
1 h. However, we were unable to significantly suppress the mixed 
lymphocyte reaction once the reaction had been in progress for 
24 h. These data suggest that the immunosuppressive effects of 
rIL-16 are dependent upon its presence near the time of initial Ag 
presentation and TCWCD3R costimulation before complete com- 
mitment of the downstream events following the immediate sec- 
ond messenger cascade has occurred (73). The suppression of pro- 
liferation is reversible in that the response to previously 
unstimulated TCWCD3 returns to normal once CD4 is no longer 
bound with rIL-16. On the other hand, suppression is continuously 
observed throughout the time course of the mixed lymphocyte re- 

W. W. Cruikshank,  A. C.  Theodore, K. Lim, J. Cook, G. Fine, P. F. Weller, and 

terleukin-16. Submitted for publication. 
D. M. Center. CD3-dependent activation and proliferation is  suppressed by in- 

Time 
(hours) 

0 

2 

4 

6 

24 

OKT4 OKT4A 

FIGURE 5. Detection of epitope-specific  binding  of  rlL-16  to  CD4. 
Histograms were  obtained  by FACScan analysis of  T  cells stained with 
FITC-conjugated OKT4  or  OKT4A Ab  following  incubation  with 10" 
M rlL-16 for 2,4, 6, and  24 h. Gates were set around  the  lymphocyte 
population,  and  a  total of 5000 cells  were analyzed. Linear green flu- 
orescence (x-axis) is plotted against relative  cell  number (y-axis) for 
each panel of the composite.  A decrease in fluorescence indicates  a 
decrease in detectable surface Ag  and is  reflected as a shift to the left 
on a histogram. The 0 h  time  point  depicts  CD4 expression as deter- 
mined  by  OKT4  and  OKT4A  staining  before the addition of rlL-16. At 
each subsequent time  point  for  OKT4, the solid histograms represent 
CD4 expression of  cells  incubated with rlL-16  compared with  CD4 
expression of  untreated  cells harvested at the same time  points  (over- 
lays). For OKT4A, the overlays of  control  cells are superimposed on 
rlL-16-treated  cells  shown  by  open histograms, but  no shift is  seen 
compared  with  the reference line (bar). The difference in OKT4 stain- 
ing  compared  with  OKT4A  indicates  displacement by a  competing 
molecule  (rlL-16)  proportional  to  the  amount  of  competitor  bound (30, 
56). The percent  of  positively stained cells for both  OKT4  and  OKT4A 
ranged from  50  to  60%  in  all experiments. One representative exper- 
iment  of three is shown. 
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action if TCWCD3 stimulation occurs when CD4  is bound to 
rIL- 16. 

The essential role of CD4 as a sentinel receptor is demonstrated 
by the effects observed  following interaction with rIL-16, as com- 
pared with Ag presentation by MHC-bearing APC. Thus, when 
CD4 is engaged by MHC with proper Ag presentation, amplifica- 
tion of the TCWCD3 response occurs; CD4 associates with TCW 
CD3, IL-2R are expressed, and a proliferative signal is propagated 
after interaction with IL-2. However, when CD4 is engaged by 
rIL-16, the proliferative response to a MHC interaction via the 
TCWCD3 complex is reversibly suppressed. It is likely that this 
effect is mediated at multiple levels, including extracellular occu- 
pancy of CD4 and receptor second messenger signal cross-desen- 
sitization. Since the interaction of rIL-16 with CD4 in the absence 
of TCWCD3 stimulation results in a proinflammatory motile state, 
CD4 (and IL-16) may play a role in  commitment to the essential T 
cell functions of clonal expansion, tolerance, or inflammation. 

Although the regulatory role of CD4 on TCWCD3-mediated 
proliferation has been well documented (69-71, 74, 7 3 ,  previous 
studies have been able to employ only anti-CD4 Abs or prepara- 
tions of HIV-1  gp120 as ligands for  CD4. Our investigation is the 
first to be performed with a recombinant form of a natural CD4 
ligand and corroborates prior observations utilizing the alternative 
CD4 ligands. The induction of functional unresponsiveness dem- 
onstrated with rIL-16 may elucidate  the roles of natural IL-16 and 
provide a mechanism by which CD4 regulates CD3 in vivo. 
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