Constraints on Models of the Higgs Boson with Exotic Spin and Parity using Decays to Bottom-Antibottom Quarks in the Full CDF Data Set

T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos, G. Apollinari, J. A. Appel, T. Arisawa, A. Artikov, J. Asaadi, W. Ashmanskas (+390 others)
2015 Physical Review Letters  
A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific non-standard Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity $J^P$ = $0^-$ and a graviton-like Higgs boson with $J^P$ = $2^+$, assuming for both a mass of 125 GeV/$c^2$. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair.
more » ... ottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of $\sqrt{s}=1.96$ TeV, and correspond to an integrated luminosity of 9.45 fb$^{-1}$. We observe no significant deviations from the predictions of the standard model with a Higgs boson of mass 125 GeV/$c^2$, and set bounds on the possible rate of production of each exotic state.
doi:10.1103/physrevlett.114.141802 pmid:25910110 fatcat:vecsdfdgtvfdhjwxvupptykytm