Approximation Algorithms for MAX 4-SAT and Rounding Procedures for Semidefinite Programs [chapter]

Eran Halperin, Uri Zwick
1999 Lecture Notes in Computer Science  
Karlo and Zwick obtained recently an optimal 7=8-approximation algorithm for MAX 3-SAT. In an attempt to see whether similar methods can be used to obtain a 7=8-approximation algorithm for MAX SAT, we consider the most natural generalization of MAX 3-SAT, namely MAX 4-SAT. We present a semide nite programming relaxation of MAX 4-SAT and a new family of rounding procedures that try to cope well with clauses of various sizes. We study the potential, and the limitations, of the relaxation and of
more » ... e proposed family of rounding procedures using a combination of theoretical and experimental means. We select two rounding procedures from the proposed family of rounding procedures. Using the rst rounding procedure we seem to obtain an almost optimal 0:8721-approximation algorithm for MAX 4-SAT. Using the second rounding procedure we seem to obtain an optimal 7=8-approximation algorithm for satis able instances of MAX 4-SAT. On the other hand, we show that no rounding procedure from the family considered can yield an approximation algorithm for MAX 4-SAT whose performance guarantee on all instances of the problem is greater than 0:8724. Although most of this paper deals speci cally with the MAX 4-SAT problem, we believe that the new family of rounding procedures introduced, and the methodology used in the design and in the analysis of the various rounding procedures considered would have a much wider range of applicability.
doi:10.1007/3-540-48777-8_16 fatcat:cnqiu5eccrfftbke66q2iinhu4