Graphene Synthesis by Ultrasound Energy Assisted Exfoliation of Graphite in Various Solvents [post]

Betül Gürünlü, Çiğdem Taşdelen-Yücedağ, Mahmut Bayramoğlu
2020 unpublished
Liquid Phase Exfoliation (LPE) method has been gaining increasing interest by academic and industrial researchers due to its simplicity, low-cost, and scalability. High intensity ultrasound energy was exploited to transform graphite to graphene in the solvents of dimethyl sulfoxide (DMSO), N,N-dimethyl formamide (DMF), and perchloric acid (PA) without any surfactants or ionic liquids. The crystal structure, number of layers, particle size, and morphology of the synthesized graphene samples were
more » ... aphene samples were characterized by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet visible (UV–vis) spectroscopy, Dynamic Light Scattering (DLS), and Transmission Electron Microscopy (TEM). XRD and AFM analyses indicated that G-DMSO and G-DMF have few layers and G-PA has multilayers. The layer numbers of G-DMSO, G-DMF, and G-PA were determined as 9, 10, and 21, respectively. By DLS analysis, the particle sizes of graphene samples were estimated in a few micrometers. TEM analyses showed that G-DMSO and G-DMF possess sheet-like fewer layers and also, G-PA has wrinkled and unordered multilayers.
doi:10.3762/bxiv.2020.114.v1 fatcat:2j5olwceyve6xcf7z4hfghteam