Occupant Classification Using Range Images

Pandu Rangarao Devarakota, Marta Castillo-Franco, Romuald Ginhoux, Bruno Mirbach, BjÖrn Ottersten
2007 IEEE Transactions on Vehicular Technology  
Static occupant classification is an important requirement in designing so-called "smart airbags". Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure sensor based systems, as they can provide additional functionalities like dynamic occupant position analysis or child seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low resolution range sensor
more » ... ution range sensor which is based on the time-of-flight principle. This range sensor is advantageous since it provides directly a dense range image, independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant classification system using a novel low-resolution range image sensor is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian Mixture Model (GMM) classifier and polynomial classifier are compared to a clustering based linear regression classifier using a polynomial kernel. The latter one shows improved results compared to the first three classification methods. Full scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.
doi:10.1109/tvt.2007.897645 fatcat:yr3yjaxqiffodowql2t2b4onne