Bioconversion of Ginsenosides by Bifidobacterium CBT BG7, BR3 and BL3

Jiwon Choi, Chang Kwon, Jong Won Kim, Myung Jun Chung, Jong Hyun Yoon, Sanghyun Lim
2022 Microbiology and Biotechnology Letters  
In this study, we identified that the fermentation of Korean indigenous probiotics and red ginseng produced ginsenoside compound K (CK) from major ginsenosides. Based on whole genome sequencing of 19 probiotics species, β-glucosidase, α-arabinofuranosidase, β-xylosidase, and α-rhamnosidase related to bioconversion of ginsenosides are identified in the genome of 19 species, 3 species, 6 species, and 8 species, respectively. Among the 19 probiotics species, Bifidobacterium longum CBT BG7
more » ... from ginsenoside Rb1 to CK, and both B. breve CBT BR3 and B. lactis CBT BL3 converted ginsenoside Rb1 to Rd. The final concentration and yield of ginsenoside F2 and CK were higher in the fermentation with the nondisrupted cells than with disrupted cells. The combination of both CBT BG7 and BL3, and CBT BG7 and BR3 showed higher amounts of F2 than CBT BG7 only. CBT BG7 with adding α-amylase increased the amounts of F2. In this study, we identified that the fermentation of both Korean indigenous probiotic bacteria CBT BG7, BR3 and BL3, and red gingseng is able to produce CK, a bioactive compound that promotes health benefits.
doi:10.48022/mbl.2208.08005 fatcat:5eqstx4v5ng53es3vvsz2wjl2a