COVID-19: A Data-Driven Mean-Field-Type Game Perspective [article]

Hamidou Tembine
2020 medRxiv   pre-print
In this article, a class of mean-field-type games with discrete-continuous state spaces is considered. We establish Bellman systems which provide sufficiency conditions for mean-field-type equilibria in state-and-mean-field-type feedback form. We then derive unnormalized master adjoint systems (MASS). The methodology is shown to be flexible enough to capture multi-class interaction in epidemic propagation in which multiple authorities are risk-aware atomic decision-makers and individuals are
more » ... k-aware non-atomic decision-makers. Based on MASS, we present a data-driven modelling and analytics for mitigating Coronavirus Disease 2019 (COVID-19). The model integrates untested cases, age-structure, decision-making, gender, pre-existing health conditions, location, testing capacity, hospital capacity, mobility map on local areas, in-city, inter-cities, and international. It shown that the data-driven model can capture most of the reported data on COVID-19 on confirmed cases, deaths, recovered, number of testing and number of active cases in 66+ countries. The model also reports non-Gaussianity and non-exponential properties in 15+ countries.
doi:10.1101/2020.07.23.20160853 fatcat:5c7uoi2bivdjxe47ahncxtyjye