A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
A New Class of Upper Bounds on the Log Partition Function
2005
IEEE Transactions on Information Theory
We introduce a new class of upper bounds on the log partition function of a Markov random field (MRF). This quantity plays an important role in various contexts, including approximating marginal distributions, parameter estimation, combinatorial enumeration, statistical decision theory, and large-deviations bounds. Our derivation is based on concepts from convex duality and information geometry: in particular, it exploits mixtures of distributions in the exponential domain, and the Legendre
doi:10.1109/tit.2005.850091
fatcat:gj3suuqbcnawdlaipub25a7jt4